<table>
<thead>
<tr>
<th>Description</th>
<th>Item No.</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Assembled Boiler</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>*Safety Relief Valve</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Elbow ¾” 90°</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>¾” Close Nipple</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Temperature Pressure Gauge 2” Shank</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nipple 1¼” Close (1)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Bushing ¾” x ¼”</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Bushing 1¼” x ¾” (2)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Critical Installation Instruction</td>
<td>9</td>
<td>11” x 17” Page for critical installation issues.</td>
</tr>
<tr>
<td>Document Package</td>
<td>10</td>
<td>Includes essential documents.</td>
</tr>
</tbody>
</table>

* Boiler provided with 50 psig (206 kpa) safety relief valve. Field source safety relief valve if system pressure greater than 40 psig.

** Boiler provided with 75 psig temperature pressure gauge. Field source temperature pressure gauge if system pressure greater than 60 psig.

If optional equipment is ordered with this boiler, verify options ordered are included with your boiler. Options may include Pump and or Aquastat kit.
OVERALL DIMENSIONS

LEFT SIDE OF BOILER

FRONT OF BOILER

RIGHTSIDE OF BOILER

BACK OF BOILER

TOP FRONT OF BOILER

Table 1: Model 399 - Physical Data

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
<th>Inches</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Width</td>
<td>27 7/8</td>
<td>688</td>
</tr>
<tr>
<td>B</td>
<td>Height - Unit only</td>
<td>52</td>
<td>1320</td>
</tr>
<tr>
<td>C</td>
<td>Depth</td>
<td>21 7/8</td>
<td>537</td>
</tr>
<tr>
<td>D**</td>
<td>Height unit w/ Optional Kit L-4006</td>
<td>66 7/8</td>
<td>1683</td>
</tr>
<tr>
<td>E</td>
<td>Height unit w/vent</td>
<td>56 7/8</td>
<td>1439</td>
</tr>
<tr>
<td>G/H</td>
<td>Return Water from System 1 1/4” NPT</td>
<td>Location (G)</td>
<td>3 7/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location (H)</td>
<td>5 7/8</td>
</tr>
<tr>
<td>H/I</td>
<td>Supply Water to System 1 1/4” NPT</td>
<td>Location (H)</td>
<td>5 7/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location (I)</td>
<td>4 7/8</td>
</tr>
<tr>
<td>J/K</td>
<td>Gas Connection 1” NPT</td>
<td>Location (J)</td>
<td>9 1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location (K)</td>
<td>8 7/16</td>
</tr>
<tr>
<td>*L/*M</td>
<td>Condensate Drain Connection 3/4”NPT</td>
<td>Location (L)</td>
<td>12 5/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location (M)</td>
<td>11 7/16</td>
</tr>
<tr>
<td>Weight</td>
<td>Shipping</td>
<td>290 lbs</td>
<td>132kg</td>
</tr>
<tr>
<td></td>
<td>Unit</td>
<td>265 lbs</td>
<td>121kg</td>
</tr>
<tr>
<td></td>
<td>Vent Connector</td>
<td>4</td>
<td>102</td>
</tr>
</tbody>
</table>

* Note - Alternate Condensate Drain Connection on Right Side of Boiler.

**Physical Data "D" includes optional L-4006 kit

TABLE OF CONTENTS

1 - Introduction.. 5
2 - Important Safety Information.. 6
3 - Component Listing .. 7
4 - Locating Boiler ... 10
5 - Hydronic Piping ... 11
 5.2 Special Conditions ... 11
 5.3 Safety Relief Valve and Air Vent .. 11
 5.4 Trim Piping .. 12
 5.5 System Piping .. 12
6 - Combustion Air And Vent Piping .. 19
 6.2 Removal of Existing Boiler From Common Vent System ... 19
 6.3 Venting Materials .. 19
 6.4 Vent Pipe Installation .. 20
 6.5 Vent Termination ... 21
 6.6 Venting Configurations ... 26
 6.7 Side Venting Terminal Requirements of : .. 29
 6.8 Multiple Boiler Venting Installation .. 28
 6.9 Condensate Piping .. 28
7 - Gas Supply Piping ... 29
8 - Electrical Connections ... 31
 8.3 Line Voltage Connections .. 31
 8.4 External Connections .. 31
9 - Start Up Procedure ... 33
 9.7 Perform CSD-1 Compliance Test ... 38
 9.8 Complete Start Up Procedure ... 39
10 - Operating Instructions .. 40
11 - General Maintenance And Cleaning ... 41
12 - Ratings And Capacities ... 43
13 - Trouble Shooting ... 41
13 - Trouble Shooting (Temperature Resistance Chart) ... 61
14 - Wiring Diagram ... 62
15 - Glossary .. 64
APPENDIX A - CONTROL MODULE .. 66
 1.1 Introduction .. 66
 1.2 Operation ... 66
 1.3 Status Indication ... 66
 1.4 Sequence of Operation .. 67
 1.5 User Menu ... 69

OPTIONAL USER INTERFACE RELOCATION .. 79

PRIMARY LOOP EQUIVALENT LENGTH CALCULATIONS & PUMP SELECTION 80-81
1 - INTRODUCTION

1.1 Designated Use
- Hot water heating boiler.
- Indoor installation.
- Closet or alcove installation.
- Direct vent or single vent pipe boiler.
- For use with natural gas or liquefied petroleum gases (LP/propane).

1.2 The unit MUST NOT:
- Directly heat potable water. Indirect heating is acceptable.
- Heat water with non-hydronic heating system chemicals present (example, swimming pool water).
- Exceed 150 psig (1.03 MPa) maximum allowable working pressure.
- Exceed 195°F (90.5°C) system design temperature.

1.3 Operational Features
- Modulating: 20-100%.
- Integral Dual Temperature Limit.
- CSD-1 Compliant - listing based on manufacturer's interpretation of CSD-1 requirements. Consult authority having jurisdiction prior to installation.
 - Manual reset low water cutoff
 - Manual reset high temperature limit
- Outdoor Temperature Reset Available.
- Heat exchanger over heat protection.
- Alternate mounting of User Interface Available

Check our website frequently for updates: www.ecrinternational.com

Information and specifications outlined in this manual in effect at the time of printing of this manual. ECR International, Inc. reserves the right to discontinue, change specifications or system design at any time without notice and without incurring any obligation, whatsoever.
2.1 **General**

Boiler installation shall be completed by qualified agency. See glossary for additional information.

WARNING

Fire, explosion, asphyxiation and electrical shock hazard. Improper installation could result in death or serious injury. Read this manual and understand all requirements before beginning installation.

CAUTION

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

WARNING

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE

Used to address practices not related to personal injury.

2.2 **Become familiar with symbols identifying potential hazards.**

This is the safety alert symbol. Symbol alerts you to potential personal injury hazards. Obey all safety messages following this symbol to avoid possible injury or death.

DANGER

Indicates a hazardous situation which, if not avoided, **WILL** result in death or serious injury.

WARNING

Indicates a hazardous situation which, if not avoided, **could** result in death or serious injury.

CAUTION

Indicates a hazardous situation which, if not avoided, **could** result in minor or moderate injury.

NOTICE

Used to address practices not related to personal injury.

2.3 **Installation shall conform to requirements of authority having jurisdiction or in absence of such requirements:**

- United States
 - National Electrical Code, NFPA 70.
- Canada
 - Natural Gas and Propane Installation Code, CAN/CSA B149.1.
 - Canadian Electrical Code, Part I, Safety Standard for Electrical Installations, CSA C22.1

2.4 **Where required by authority having jurisdiction, installation shall conform to Standard for Controls and Safety Devices for Automatically Fired Boilers, ANSI/ASME CSD-1.**

Additional manual reset low water cutoff may be required.

2.5 **Requirements for Commonwealth of Massachusetts:**

Boiler installation must conform to Commonwealth of Massachusetts code 248 CMR which includes but is not limited to:

- Installation by licensed plumber or gas fitter.
FIGURE 3-1 Boiler Components (Viewed from Left side of Boiler)

1. Combustion Air Inlet
2. Vent Connector
3. Return Water From Heating System
4. Supply Water To Heating System
5. Safety Relief Valve
6. Controls Tree
7. Temperature Pressure Gauge
8. Gas Supply
9. User Interface
10. Limit Control (Optional)

NOTE:
See Section 5-3 For Safety Relief Valve Piping Instructions

FIGURE 3-2 Jacket Removal (Viewed from Left Side of Boiler)

Disengage jacket latches on both sides of boiler. Lift jacket up and off support at bottom of jacket and remove.
3.1 Component Listing - Refer to diagrams on following pages.

1. **Combustion Air Inlet (4")** See section 6.
2. **Vent Connector (4")** See section 6.
3. **Gas Supply (1" NPT)**
4. **Return Water From Heating System - In, (1¼" NPT)** See section 5.
5. **Gas Shutoff Valve** Fuel supply isolation during servicing. See section 7.
6. **Gas (Control) Valve** Delivers proper quantity of fuel to Combustion Air Blower. (Not shown) See section 7.
7. **Igniter**
8. **Flame Sensor**
9. **High Voltage Junction Box** For connection of 120V components. See section 8.
10. **10 Amp Breaker**
11. **Low Voltage Terminal Strip** Connection of all low voltage wiring, including thermostat.
12. **Wire Knockouts**
13. **Boiler Control Module with Spare Fuse**
14. **Heat Exchanger Surface Temperature Switch (located behind control panel)**
15. **Vent Temperature Sensor**
16. **Condensate Drain Right or Left Option** Condensate must be piped to appropriate drain. See section 6.
17. **Drain Valve**
18. **Condensate Trap - Right or Left Option** Boiler produces a liquid (condensate) as a by-product of combustion. (See page 33)
19. **Control Tee (Field installed)**
20. **Low Water Cutoff (LWCO)**
22. **Manual Reset Secondary Temperature Limit Control** (Optional Field Installed)
23. **Optional Air Filter**
24. **Temperature Pressure Gauge** (Field Installed)
25. **User Interface** - Displays information regarding boiler condition. Allows adjustment of boiler operating parameters. **NOTE:** Does not replace thermostat used to control central heating space.
26. **Supply Water Temperature Sensor**
27. **Combustion Air Blower** Delivers proper quantity of combustion air, receives fuel from gas valve, mixes air and fuel sending mixture to burner for combustion.
28. **Sight Glass** - Permits observation of burner flame.
29. **Heat Exchanger Strap and Buckle** (2)
30. **Transformer**
31. **DHW Pump, General Boiler Pump, CH Pump and Blower Relays**
32. **Heat Exchanger**
33. **ASME Plate**
34. **Flue Collector**
35. **Return Water Temperature Sensor**
36. **Leveling Feet** (4)
37. **Safety Relief Valve** Factory supplied, Field installed. See section 5.
38. **Burner** not shown (see page 3)
39. **Spare Fuse** not shown (see page 3)
40. **Flue Gas Test Port**
41. **Combustion Air Test Port**
FIGURE 3-3 Boilers Components 399 MBH (View from Front of Boiler) As seen on front cover

1. Combustion Air Inlet
2. Vent Connector
3. Gas Supply
4. Return Water From Heating System
5. Gas Shutoff
6. Gas (Control) Valve (Behind Air Filter)
7. Igniter
8. Flame Sensor
9. High Voltage Junction Box
10. 10 AMP Breaker
11. Low Voltage Terminal Strip
12. Wire Knockouts
13. Boiler Control Module
 Fuse and Holder W/ Spare Fuse
14. Controls Tree
15. Vent Temperature Sensor
16. Condensate Drain Connection
17. Drain Valve
18. Condensate Trap
19. Supply Water To Heating System
20. Limit Control (Optional)
21. Safety Relief Valve (Rear)
22. Temperature Pressure Gauge
23. Optional Air Filter
24. User Interface
25. Supply Temperature Sensor
26. Combustion Air Blower
27. Sight Glass
28. Heat Exchanger Strap and Buckle (2)
29. Transformer
30. DHW Pump, General
31. Boiler Pump, CH Pump and Blower Relays
32. Heat Exchanger
33. ASME Plate
34. Flue Collector
35. Alternate Condensate Drain Connection
36. Return Water Temperature Sensor
37. Alternate Condensate Trap
38. Leveling Feet (4)
4.1 **Boiler Location Considerations**

- Ambient room temperature always above 32°F (0°C) to prevent freezing of liquid condensate.
- Approved for installation in closets and on combustible floors. Do not install boiler on carpeting.
- Protect gas ignition system components from water (dripping, spraying, rain, etc.) during operation and service (circulator replacement, condensate trap, control replacement, etc.).
- Locate boiler on level, solid base as near outside vent wall as possible and centrally located with respect to heat distribution system as practical.
- Determine alternate User Interface mounting location if desired. See page 81 - Optional User Interface Relocation.
- Access to outdoors to meet minimum and maximum pipe lengths for combustion air and vent piping. See section 6.
- Disposal of condensate. See section 6.
- Drainage of water (or water - antifreeze solution) during boiler service or from safety relief valve discharge. See section 5.
- Access to system water piping, gas supply, and electrical service. See sections 5, 7 and 8.
- Clearances to combustible materials and service clearances. See Table 2 and figure 4-1.
- Multiple Boilers can be placed side by side, or back to back.

WARNING

Fire hazard. Do not install boiler on carpeting. Failure to follow these instructions could result in death or serious injury.

TABLE 2: BOILER CLEARANCES

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Combustible Materials (1)</th>
<th>Service(1)(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>399</td>
<td>399</td>
</tr>
<tr>
<td>Top (A)</td>
<td>0" (0 cm)</td>
<td>18" (36 cm)</td>
</tr>
<tr>
<td>Left Side (B)</td>
<td>0" (0 cm)</td>
<td>6" (0 cm)</td>
</tr>
<tr>
<td>Right Side (C)</td>
<td>0" (0 cm)</td>
<td>6" (0 cm)</td>
</tr>
<tr>
<td>Front (D)</td>
<td>0" (0 cm)</td>
<td>24" (16 cm)</td>
</tr>
<tr>
<td>Back (E)</td>
<td>0" (0 cm)</td>
<td>0" (0 cm)</td>
</tr>
<tr>
<td>Combustion Air/Vent piping</td>
<td>0" (0 cm)</td>
<td>6" (16 cm)</td>
</tr>
<tr>
<td>Hot Water Piping</td>
<td>See local code</td>
<td>6" (16 cm)</td>
</tr>
</tbody>
</table>

(1) Required distances measured from boiler jacket.
(2) Service clearance recommendation.
5.1 General

- Install piping in accordance with authority having jurisdiction.

NOTICE

Use two (2) wrenches when tightening boiler’s fitting and pipes. Boiler’s internal piping can be damaged if subjected to excessive torque.

- Support system piping and safety relief valve discharge piping. Boiler’s internal piping can be damaged if subjected to excessive weight.
- Size central heating pump (and domestic hot water pump, if used) for system requirements only.
- Thoroughly clean and flush system before connecting to boiler.
- If oil is present in system water, use approved detergent to wash system.
- Flush system to remove any solid objects such as metal chips, fibers, or Teflon tape, etc.

5.2 Special Conditions

- System piping exposed to freezing conditions: Use inhibited propylene glycol solutions certified by fluid manufacturer for use with closed water heating system. Do not use automotive or ethylene glycol.
- Boiler used in connection with refrigeration system. Install piping in parallel with boiler, with appropriate valves to prevent chilled medium from entering boiler.
- System piping connected to heating coils located in air handling unit exposed to refrigerated air circulation. Install flow control valves or other automatic means to prevent gravity circulation of boiler water during cooling cycle.

5.3 Safety Relief Valve

NOTICE

Boiler rated at 150 psig (1.03 MPa) maximum allowable working pressure. Boiler provided with 50 psig (345 kPa) safety relief valve. Field source safety relief valve for system pressures greater than 25 psig. Temperature Pressure Gauge satisfactory for 60 psig operation. Field source temperature pressure gauge for system pressures greater than 60 psig.

- Install safety relief valve. See figure 5-1
- Install safety relief valve with spindle in vertical position.
- Do not install shutoff valve between boiler and safety relief valve.
- Install discharge piping from safety relief valve. See figure 5-2.
- Use ¾" or larger pipe.

WARNING

- Poison hazard. Ethylene glycol is toxic. Do not use ethylene glycol.
- Never use automotive or standard glycol antifreeze, even ethylene glycol made for hydronic systems.
- Ethylene glycol can attack gaskets and seals used in hydronic systems.
- Use only inhibited propylene glycol solutions certified by fluid manufacturer as acceptable for use with closed water heating system.
- Thoroughly clean and flush any system that used glycol before installing new Boiler.
- Provide user with Material Safety Data Sheet (MSDS) on fluid used.

NOTICE

Do not expose boiler and condensate piping to freezing temperatures.

FIGURE 5-1 Safety Relief Valve (Viewed from top, left side of boiler)

- *Optional Aquastat Limit Control
- *Limit Well ½"
- *Tee 1¼" x 1¾" x ¾"
- * 1¼"Close Nipple
- Safety Relief Valve
- Elbow ¾” 90°
- 1¼" Close Nipple
- Bushing 1¼" x ¾"
- Controls Tree
- Bushing ¼" x ¼"
- Bushing 1¼" x ¾"
- 1¼" Close Nipple

* Included in optional accessory kit.

Position Safety Relief Valve to provide space for discharge piping.
5 - HYDROIC PIPING

WARNING

Burn and scald hazard. Safety relief valve could discharge steam or hot water during operation. Install discharge piping per these instructions.

FIGURE 5-2 Safety Relief Valve Discharge Piping
(View Right side of Boiler)

- Use pipe suitable for temperatures of 375°F (191°C) or greater.
- Individual boiler discharge piping shall be independent of other discharge piping.
- Size and arrange discharge piping to avoid reducing safety relief valve relieving capacity below minimum relief valve capacity stated on rating plate.
- Run pipe as short and straight as possible to location protecting user from scalding and properly drain piping.
- Install union, if used, close to safety relief valve outlet.
- Install elbow(s), if used, close to safety relief valve outlet and downstream of union (if used).
- Terminate pipe with plain end (not threaded).
- Arrange piping to prevent water dripping onto boiler.

5.4 Low Water Cutoff (LWCO) and Aquastat

- Unit shipped with LWCO installed.
- Optional manual reset Hi limit if required, connect wires and remove factory jumper to terminal strip. Maximum limit setting is 190°F (88°C). Use thermal grease.

5.5 Trim Piping

- Temperature - Pressure Gauge. Install temperature pressure gauge using bushings provided with boiler. See Figure 5-1 and 5-3.
- Protect chassis grommets from heat damage.

5.6 System Piping

- See Table 3 for basic system piping configurations.
- See Table 3 for general boiler pump sizing requirements.
- Systems with automatic fill valves require back flow prevention device.
- Single boiler system. See Figure 5-5 through 5-7 for general guidance. Additional considerations:
 - Boiler control is designed for single central heating pump. Installer responsible for integration of multiple central heating pumps.
 - Boiler control allows domestic hot water prioritization. Function could be lost if central heating pump not directly connected to control system.
- Multiple boiler system. See Figure 5-8A, B & C for general guidance. Additional considerations:
 - Control system requires equivalent water temperatures entering each boiler to properly sequence and adjust system supply temperature.
 - Install multi boiler sensor kit. See "Parts, Kits & Optional Accessories" manual for part number.
- Boiler control provides integrated manual reset high limit as primary limit control. Optional Aquastat Kit is for those jurisdictions with this requirement. See figure 5-3.

* Included in optional accessory kit.
5 - HYDRONIC PIPING

NOTICE

Illustrations are meant to show system piping concept only. Installer is responsible for all equipment and detailing required by authority having jurisdiction.

NOTICE

Arrange piping to prevent water dripping onto boiler.

See Table 3 for primary general pump sizing. Primary circuit pipe components must also be included to size pump.

Table 3 - General Boiler Pump Sizing Chart

<table>
<thead>
<tr>
<th>System ΔT</th>
<th>Flow, GPM</th>
<th>Feet Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>38</td>
<td>41</td>
</tr>
<tr>
<td>30</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>40</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>60</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>

Primary Loop Equivalent Length Calculation & Pump Selections may be found on pages 79 thru 80 of this manual.

Table 4 - System Piping Configurations

<table>
<thead>
<tr>
<th>Single Boiler</th>
<th>Primary/Secondary Two Pipe Zoned System With Zone Valves</th>
<th>figure 5-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary/Secondary Two Pipe Zoned System With Zone Pumps</td>
<td>figure 5-6</td>
</tr>
<tr>
<td></td>
<td>Primary/Secondary Pumping Without DHW Tank</td>
<td>figure 5-7A</td>
</tr>
<tr>
<td></td>
<td>Primary/Secondary Pumping With DHW Tank</td>
<td>figure 5-7B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiple Boilers</th>
<th>Primary/Secondary Two Pipe Zoned System With Zone Valves</th>
<th>figure 5-8A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary/Secondary Two Pipe Zoned System With Zone Pumps</td>
<td>Not Shown</td>
</tr>
<tr>
<td></td>
<td>Primary/Secondary Pumping Without DHW Tank</td>
<td>figure 5-8B</td>
</tr>
<tr>
<td></td>
<td>Primary/Secondary Pumping With DHW Tank</td>
<td>figure 5-8C</td>
</tr>
</tbody>
</table>
FIGURE 5-5 Single Boiler Primary/Secondary Two-Pipe Zoned System With Zone Valves

Limit length to 5' (1.6m)

12"(305mm) Maximum separation

General Boiler Pump on Return Side

DHW Pump

CH/System Pump

FIGURE 5-6 Single Boiler Primary/Secondary Two-Pipe Zoned System With Zone Pumps

Limit length to 5' (1.6m)

12"(305mm) Maximum separation

Primary Loop Equivalent Length Calculation & Pump Selections may be found on pages 79 thru 80 of this manual.
5 - HYDRONIC PIPING

FIGURE 5-7A Single Boiler Using Primary/Secondary Pumping

Limit length to 5' (1.6m)

12"(305mm) Maximum separation

FIGURE 5-7B Single Boiler Using Primary/Secondary Pumping With DHW Tank

Primary Loop Equivalent Length Calculation & Pump Selections may be found on pages 79 thru 80 of this manual.

Limit length to 5' (1.6m)

12"(305mm) Maximum separation
FIGURE 5-8A Multiple Boiler Primary/Secondary Two Pipe Zoned System With Zone Valves - (See Multiple Boiler Guide)

- Limit length to 5’ (1.6m)
- 12” (305mm) Maximum separation

Up to 16 boilers

(See Multiple Boiler Guide)
FIGURE 5-8B Multiple Boilers Using Primary/Secondary Pumping

Size common piping per maximum heat capacity of entire system

1. Limit length to 5' (1.6m)

2. 12" (305mm) Maximum separation

Up to 16 boilers

(See Multiple Boiler Guide)
5-8C Multiple Boilers Using Primary/Secondary Pumping with DHW Tank

- Heating Load
- System Temperature Sensor
- CH/System Pump

Size Common Piping Per Maximum Heat Capacity Of Entire System

1. Limit length to 5' (1.6m)
2. 12"(305mm) Maximum separation

Up to 16 boilers
6.1 General
This boiler requires a dedicated direct vent system. Install combustion air and vent piping in accordance with these instructions, authority having jurisdiction, and:

- Canada - Natural Gas and Propane Installation Code, CAN/CSA B149.1

Vent connections serving appliances vented by natural draft shall not be connected into any portion of mechanical draft systems operating under positive pressure. Install vent system in accordance with these instructions. This boiler is not approved for common venting.

6.2 Removal of Existing Boiler From Common Vent System
When existing boiler is removed from common venting system, common venting system is likely to be too large for proper venting of appliances remaining connected to it. After removal of existing boiler, following steps shall be followed with each appliance remaining connected to common venting system placed in operation, while other appliances remaining connected to common venting system are not in operation:

- Seal any unused openings in common venting system.
- Visually inspect venting system for proper size and horizontal pitch. Determine there is no blockage or restrictions, leakage, corrosion and other deficiencies which could cause an unsafe condition.
- When practical, close all building doors, windows, and all doors between space in which appliances remaining connected to common venting system are located and other spaces of building. Turn on clothes dryer and any appliance not connected to common venting system. Turn on exhaust fans, such as range hoods and bathroom exhaust so they will operate at maximum speed. Do not operate summer exhaust fan. Close fireplace dampers.
- Turn on appliance being inspected. Follow lighting instructions. Adjust thermostat so appliances will operate continuously.
- Test for spillage at draft hood relief opening after 5 minutes of main burner operation. Use flame of match or candle, smoke from cigarette, cigar or pipe.
- Determine each appliance remaining connected to common venting system properly vents when tested as outlined above. Then return doors, windows, exhaust fans and any other gas-burning appliance to their previous condition of use.

6.3 Venting Materials
- See Table 4

Table 4 - Combustion air and vent pipe fittings must conform with the following:

<table>
<thead>
<tr>
<th>Item</th>
<th>Material</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vent Pipe and Fittings</td>
<td>PVC schedule 40</td>
<td>ANSI/ASTM D1785</td>
</tr>
<tr>
<td></td>
<td>PVC - DWV</td>
<td>ANSI/ASTM D2665</td>
</tr>
<tr>
<td></td>
<td>CPVC schedule 40</td>
<td>ANSI/ASTM D1784/F441</td>
</tr>
<tr>
<td></td>
<td>SDR-21 & SDR-26 PVC</td>
<td>ANSI/ASTM D2241</td>
</tr>
<tr>
<td></td>
<td>ABS-DWV</td>
<td>ANSI/ASTM D2661</td>
</tr>
<tr>
<td></td>
<td>Schedule 40 ABS</td>
<td>ANSI/ASTM F628</td>
</tr>
<tr>
<td></td>
<td>PP (Polypropylene)</td>
<td>UL 1738</td>
</tr>
<tr>
<td></td>
<td>Pipe and Components</td>
<td>ULC S636-08</td>
</tr>
<tr>
<td></td>
<td>PVC</td>
<td>ANSI/ASTM D2564</td>
</tr>
<tr>
<td></td>
<td>CPVC</td>
<td>ANSI/ASTM F493</td>
</tr>
<tr>
<td></td>
<td>Schedule 40 ABS</td>
<td>ANSI/ASTM D2235</td>
</tr>
</tbody>
</table>

- Any improper operation of common venting system should be corrected so installation conforms with National Fuel Code, ANSI Z223.1/NFPA 54 and/or Natural Gas and Propane Installation Code, CAN/CSA B149.1. When re-sizing any portion of common venting system, common venting system should be re-sized to approach minimum size as determined using appropriate tables in Chapter 13 of the National Fuel Gas Code, ANSI Z223.1/NFPA 54 and/or Natural Gas and Propane Installation Code, CAN/CSA B149.1.

WARNING
Use of cellular core PVC for venting flue gas could result in death, or serious injury.

WARNING
Covering non-metallic vent pipe and fittings with thermal insulation shall be prohibited.
6.4 Vent Pipe Installation
- Minimum and maximum combustion air and vent pipe lengths listed in Table 5. Pipe length counted from combustion air connector to termination.

- 90° elbows equivalent to 5.0 ft (1.6 m). 45° elbows equivalent to 3.5 ft (1.1 m).

- Use flexible Polypropylene piping (PP) in a vertical position only. Check PP pipe manufacturer for details. Each foot of PP flexible pipe is equivalent to 2½ feet of smooth pipe of same diameter.

- Slope vent pipes minimum 1/4" per foot (21 mm/m) back toward boiler. Support horizontal sections to prevent sags capable of accumulating condensate.

- Support piping in accordance with pipe manufacturer’s instruction and authority having jurisdiction. In absence of manufacturer’s instruction use pipe hooks, pipe straps, brackets, or hangers of adequate and strength located at intervals of 4 ft (1.2m) or less. Allow for expansion/contraction of pipe.

- Combustion air and vent piping must be air tight and watertight.

- Certified vent system components must NOT be interchanged with other vent systems or unlisted pipe/fittings.

- Canadian installations only. All venting material, primer and glue must be listed to ULC S636.

- Canadian installations only. First 3 ft (0.9 m) of plastic vent pipe from vent connector must be readily accessible for visual inspection.

6.5 Vent Termination
- Terminate combustion air and vent pipes with fittings or concentric vent kit.
 A. See "Parts, Kits and Optional Accessories" manual for concentric vent kit part numbers.
 B. Use horizontal pipe for vent and 90° elbow for combustion air termination when using fittings.

- Separate vent terminal from air inlet terminal to prevent flue gas recirculation. If T-Terminal is used on flue pipe at sidewall, air inlet terminal shall be at least 36" or more away from vent terminal.

- Locate combustion air termination as far as possible from swimming pool, swimming pool pump house, and other sources of airborne chlorine.

- Locate combustion air and vent terminals as required by authority having jurisdiction.

WARNING
Vent extending through exterior wall shall not terminate adjacent to wall or below building extensions such as eaves, balconies, parapets or decks. Failure to comply could result in death or serious injury.

Table 5 - Combustion Air and Vent Piping Length

<table>
<thead>
<tr>
<th>Model</th>
<th>4" (102mm) Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>6 Ft (1.8 m)</td>
</tr>
<tr>
<td>Max.</td>
<td>100 Ft (30.5 m)</td>
</tr>
</tbody>
</table>

For Example: Boiler can be installed on outside wall and vented with one 90° elbow and 1 ft (0.30 m) of vent pipe.

Table 6 -Equivalent Length of Venting Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Feet</th>
<th>Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>90° Elbow</td>
<td>5</td>
<td>1.6</td>
</tr>
<tr>
<td>45° Elbow</td>
<td>3 1/2</td>
<td>1.1</td>
</tr>
<tr>
<td>2" x 4" Adapter</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3" x 4" Adapter</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Concentric Vent Kit</td>
<td>5</td>
<td>1.6</td>
</tr>
<tr>
<td>Polypropylene Flexible Pipe per Foot</td>
<td>2 5/8</td>
<td>0.8</td>
</tr>
</tbody>
</table>
6.6 Venting Configurations

Various venting configurations can be applied to this boiler. For guidance see Venting Configuration Table 7A and corresponding Figure.

NOTICE
Use of vent covers may cause freezing. If using vent covers overall vent length must be considered. Failure to heed this information may compromise operation of this boiler.

<table>
<thead>
<tr>
<th>Flue Gas Location</th>
<th>Combustion Air Location</th>
<th>Flue Gas Terminals</th>
<th>Corresponding Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>Roof</td>
<td>Two Pipe</td>
<td>Figure 6-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentric</td>
<td>Figure 6-7</td>
</tr>
<tr>
<td></td>
<td>Side Wall</td>
<td>Single Pipe</td>
<td>Figure 6-8</td>
</tr>
<tr>
<td></td>
<td>Inside Air</td>
<td>Single Pipe</td>
<td>Figure 6-9</td>
</tr>
<tr>
<td>Side Wall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roof</td>
<td>Single Pipe</td>
<td>Figure 6-10</td>
</tr>
<tr>
<td></td>
<td>Side Wall</td>
<td>Two Pipe</td>
<td>Figure 6-2, 6-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentric</td>
<td>Figure 6-4, 6-5, 6-6</td>
</tr>
<tr>
<td></td>
<td>Inside Air</td>
<td>Single Pipe</td>
<td>Figure 6-11</td>
</tr>
</tbody>
</table>

Table 7B - Combustion Air - Venting Terminal Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Location</th>
<th>Terminal Type</th>
<th>Corresponding Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venting (Flue Gas)</td>
<td>Side Wall</td>
<td>S-Terminal with 90° elbow</td>
<td>Figure 6-2, 6-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-Terminal with 45° elbow</td>
<td>Figure 6-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentric</td>
<td>Figure 6-4, 6-5, 6-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentric with accelerator</td>
<td>Figure 6-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T-Terminal</td>
<td>Figure 6-10, 6-11, 6-14</td>
</tr>
<tr>
<td></td>
<td>Roof</td>
<td>Straight Terminal</td>
<td>Figure 6-1, 6-8, 6-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentric</td>
<td>Figure 6-7</td>
</tr>
<tr>
<td>Combustion Air (Fresh Air)</td>
<td>Side Wall</td>
<td>Raised 90° down elbow</td>
<td>Figure 6-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90° down elbow</td>
<td>Figure 6-3, 6-8,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentric</td>
<td>Figure 6-4, 6-5, 6-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Terminal (inside air)</td>
<td>Figure 6-9, 6-11</td>
</tr>
<tr>
<td></td>
<td>Inside Air</td>
<td>Raised 90° down elbow</td>
<td>Figure 6-1, 6-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentric</td>
<td>Figure 6-7</td>
</tr>
</tbody>
</table>
6 - COMBUSTION AIR AND VENT PIPING

FIGURE 6-1 Two Pipe Roof Vent

- 12" (205mm) Min. horizontal separation between combustion air intake and vent of same appliance.
- 12" (205mm) Min. 84" (2134mm) Max. vertical separation between combustion air intake and vent of different appliances.
- 15" (381mm) Max. horizontal length of vent.
- Min. vent/intake between different appliances 12" (305mm).
- Max. allowable total vertical vent length with outside exposure is 10 ft. (3.05m).
- Abandoned unused masonry chimney may be used as chaseway for combustion air and vent. Both combustion air and vent pipe must exit above top of chimney with clearances as shown in figure 6-1.

FIGURE 6-2 Two Pipe Side Wall Vent

- 3" (76mm) Min. or greater separation is manufacturer recommended.
- 12" (305mm) Min. separation between combustion air intake and vent terminations.
- 12" (305mm) Min. 24" (610mm) Max. separation between bottom of combustion air intake and bottom of vent.
- Min. vent/intake between different appliances 12" (305mm).
- Max. allowable total outside exposure vent length equals 10 ft. (3.05m).
- Maintain a pitch of 1/2" per ft. (42mm/m) outside exposure back to boiler to ensure proper condensate drainage for horizontal runs.

FIGURE 6-3 Two Pipe Side Wall Vent (Multiple Appliances)

- See Snow & Ice Page 26
FIGURE 6-4 Side Wall Concentric Terminal

- 1" (25.4mm) Maximum
- Combustion Air
- Vent

FIGURE 6-5 Side Wall Concentric Terminal Multiple Appliances

- 1" (25mm) Max.
- 12" (305mm) Min.
- 36" (914mm) Min.
- Roof Overhang
- * See Note Below
- Vent
- Combustion Air
- Maintain 12" (30cm) US (18" (46cm) Canada) Clearance Above Highest Anticipated Snow Level Or Grade

- 24" (610mm) minimum Horizontal distance between end bells of each concentric terminal to prevent flue gas recirculation.

FIGURE 6-6 Concentric Terminal Connection

- 4" (102mm) Diameter PVC intake/combustion air
- Combustion Air
- 4" (102mm) Kit
- 4" (102mm) Diameter = 36" Length (0.9m)

Note: Securing strap must be field installed to prevent movement of termination kit in side wall.

Note: Overall length may be modified by cutting or extending both combustion air and vent pipes. 12" (305mm) is minimum allowable length and 60" (1.2m) is maximum allowable length for this dimension.

SDR-26 PVC (D2241) only may be used for extending pipes. Do not use Schedule 40 PVC or use couplings to extend pipes. Dimension will change if intake/vent pipes are lengthened or shortened.
Concentric Vent Roof Terminations

- Glue inner vent pipe to prevent recirculation.
- Maintain 12" (305mm) US (18"(457mm) Canada) clearance above highest anticipated snow level. Maximum of 24"(610mm) above roof.
- Support must be field installed to secure termination kit to structure.
- Elbow, roof boot/flashing field supplied.
- Allowed Wall/Roof thickness 1/2"-30" (12.7mm - 762mm).
- Vertical concentric vent system can be installed in unused masonry chimney.
- Contact Technical Support 800-325-5479 for questions regarding installation or use.

Grade, Snow & Ice

Terminate vent system bottom, minimum 12" (305mm) above highest anticipated snow level.

Avoid locations where snow may drift and block vent and combustion air. Ice or snow may cause boiler to shut down if vent or combustion air becomes obstructed.

Doors & Windows

Combustion air and vent termination must be 12" (305mm) from or below doors, windows or gravity inlet.

See Tables 4 & 5 Combustion air and Vent Piping Length Page 22.
NOTICE

Configurations of single pipe vent with flue on the sidewall, requires a tee as the vent terminal. See Figure 6-10 and 6-11.

NOTICE

If separation in Fig. 6-2 or Fig 6-12 is not large enough to prevent cross flow contamination between flue gas and fresh air use T-Terminal as shown in Fig. 6-14. Use of T-Terminal for vent as shown in Fig. 6-14 does not have a max. separation requirement between flue gas and fresh air.
6.7 Side Venting Terminal Requirements of:
- Canada - Natural Gas and Propane Installation Code, CAN/CSA B149.1

<table>
<thead>
<tr>
<th>Venting terminal from doors and windows</th>
<th>See figure 6-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venting terminal from forced air inlet of other appliances</td>
<td>See figure 6-13</td>
</tr>
<tr>
<td>Venting terminal from snow level</td>
<td>See figure 6-14</td>
</tr>
<tr>
<td>Venting terminal from vegetation</td>
<td>See figure 6-15</td>
</tr>
<tr>
<td>Venting terminal from public walkway</td>
<td>See figure 6-16</td>
</tr>
</tbody>
</table>

FIGURE 6-12

Termination must be min. 12" (305mm) from or below doors, windows or gravity inlet. If boiler uses inside air min. 4' (1219 mm).

Doors & Windows
Combustion air and vent termination must be min.12" (305mm) from or below doors, windows or gravity inlet. If boiler uses inside air min. 4' (1219 mm).

Condensate
Vent gas may condense, forming moisture, may be corrosive. Protect building materials at vent from exhaust of vent gas.

FIGURE 6-13

Termination less than 10' (3m) [If located within 10' (3m) of forced air inlet]

Forced Air Inlet
Terminate venting system 3' (0.9m) above and 10' (3.0m) from any forced air inlet (except boiler’s combustion air inlet).

FIGURE 6-14

Termination must be min. 12" (300 mm) above highest anticipated snow level.

Grade, Snow & Ice
Avoid locations where snow may drift and block vent and combustion air. Ice or snow may cause boiler to shut down if vent or combustion air becomes obstructed.

"L" Corner
Vent termination shall NOT be installed closer than 3' (0.9m) from inside corner of “L” shaped structure.
FIGURE 6-15

Vegetation, Plants & Shrubs
Keep vent termination 3’ minimum (0.9m) away from vegetation. Position termination where vent vapors will not damage plants/shrubs or air conditioning equipment.

Meters, Regulators, deck, porch
Vent termination US only - 4’ (1.2m), Canada - 6’ (1.8m) horizontally from, no case above or below, electric meters, gas meters, regulators, and relief equipment, or under deck or porch.

FIGURE 6-16

Walkways
Locate vent termination minimum 7’ (2.1m) above any public walkway, with consideration to condensate.

People or Pets
Locate combustion air and vent termination to prevent accidental contact with people or pets.

Stones, Balls, Etc.
Position combustion air and vent termination where it will NOT be damaged by foreign objects, such as stones, balls, etc.

Multiple Family Dwellings
Vent shall not terminate directly above paved sidewalk or paved driveway located between two single-family dwellings serving both dwellings.

Vapors
Position termination where vent vapors are not objectionable.

Eddy, Flue Gases
Position termination so it will not be effected by wind eddy, air born leaves, snow, or recirculated vent gases. Give consideration to excessive wind and locate away from windward side of building.
6.8 Multiple Boiler Venting Installation

- Multiple boiler application boiler shall be vented individually.
- Follow guidelines as described in Figure 6-1 through 6-7.
- Plastic vent pipe from vent connector must be readily accessible for visual inspection.

6.9 Condensate Piping

- Use materials acceptable to authority having jurisdiction. In absence of such authority:
 - USA - PVC or CPVC per ASTM D1785/D2845 Cement or primer per ASME D2564 or F493.
 - Canada - CSA or ULC certified PVC/CPVC pipe, fittings and cement.
- Attach condensate trap provided with boiler and field sourced piping to condensate drain at bottom of left or right side of boiler. See figure 6-17.
- Slope condensate drain pipe minimum 1/4" per foot (21mm/m) away from boiler.
- Use field source condensate pump if boiler located below disposal point.
- Field source condensate neutralizing kit as required by authority having jurisdiction or for environmentally friendly condensate disposal.
7 - GAS SUPPLY PIPING

7.1 General

- Use piping materials and joining methods acceptable to authority having jurisdiction. In absence of such requirements:
 - USA - National Fuel Gas Code, ANSI Z223.1/NFPA 54
 - Canada - Natural Gas and Propane Installation Code, CAN/CSA B149.1
- Size and install gas piping system to provide sufficient gas supply to meet maximum input at not less than minimum supply pressure. See Table 8.
- Support piping with hooks straps, bands, brackets, hangers, or building structure components to prevent or dampen excessive vibrations and prevent strain on gas connection. Boiler will not support piping weight.
- Use thread (joint) compound (pipe dope) suitable for liquefied petroleum gas.

7.2 Conversion Kit Instructions

- See Gas Conversion Kit Instructions included with Boiler.

Table 8 - Gas Supply Pressure

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Natural Gas</th>
<th>Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>399</td>
<td>3.0" w.c.</td>
<td>13.5" w.c.</td>
</tr>
<tr>
<td></td>
<td>(0.7 kPa)</td>
<td>(3.3 kPa)</td>
</tr>
</tbody>
</table>

Note: See Glossary - Piping Table 16
7.3 Leak Check Gas Piping
Pressure test boiler and gas connection before placing boiler in operation.

- Pressure test over 1/2 psig (3.5 kPa). Disconnect boiler and its individual gas shutoff valve from gas supply system.
- Pressure test at 1/2 psig (3.5 kPa) or less. Isolate boiler from gas supply system by closing manual gas shutoff valve. See figure 7-2 and 7-4.
- Locate leakage using gas detector, noncorrosive detection fluid, or other leak detection method acceptable to authority having jurisdiction. Do not use matches, candles, open flames, or other methods that can provide ignition source.
- Correct leaks immediately and retest.
8.1 General
Electrically bond boiler to ground in accordance with requirements of authority having jurisdiction. Refer to:
- USA- National Electrical Code, ANSI/NFPA 70.

8.2 Line Voltage Connections (figure 8-3)
• Boiler
 A. Provide individual 120V, 30 amp circuit (recommended) with fused disconnect or service switch as required by authority having jurisdiction.
 B. Open High Voltage Junction Box (see Figure 8-1 and 8-3) to access line voltage terminal strip.
 C. Connect 120 VAC circuit to line voltage terminal strip 120 VAC L,N,G.

• Central Heating Pump
 A. Isolate pump from control module if pump FLA (Full Load Amps) exceeds 10 amp maximum allowable current draw. See Figure 8-3.
 B. Connect pump to line voltage terminal strip CH PUMP L,N,G.

• Domestic Hot Water Pump
 A. Isolate pump from control module if pump FLA exceeds 10 amp maximum allowable current draw. See Figure 8-3.
 B. Connect pump to line voltage terminal strip DHW PUMP L,N,G.

• General Pump (Boiler Loop)
 A. Isolate pump from control module if pump FLA exceeds 10 amp maximum allowable current draw. See Figure 8-3.
 B. Connect pump to line voltage terminal strip primary pump, L, N, G.

8.3 External Connections (figure 8-4)
• User Interface Terminals
 A. Factory wired to USER INTERFACE terminals

• Argus Link (Multiple boiler applications only)

• Outdoor Sensor, if used.
 A. Provided with boiler.
 B. Locate outdoor sensor to protect against wind and direct sunlight. Mounting instructions provided with sensor.
 C. Maximum wire length is 100 ft (30m) for 22 ga. wire, or 150 ft (45m) for 18 ga. wire.
 D. Connect wires to OUTDOOR SENSOR terminals. Wires are interchangeable.

• System Sensor (Multiple boiler applications only)

• Domestic Hot Water (DHW) Thermostat, if used.
 A. Use temperature control with dry contacts rated at 0.5 amps @ 120 VAC. Boiler control does not provide power to DHW temperature control.
NOTICE

IMPORTANT: Do not apply power to DHW T-T terminals. Dry contact only, use of isolation relay may be necessary.

- **B.** Maximum wire length is 330 ft (100m) 22 gauge wire.
- **C.** Connect wires (interchangeable) to DHW T-T terminals. Wires are interchangeable.

Central Heating Thermostat

- **A.** Use thermostat or boiler system control with dry contacts related 0.5 amps @ 120 VAC. Boiler control does not provide 24 VAC power to central heating thermostat.
- **B.** Locate and install thermostat per manufacturer’s instructions. Maximum wire length is 330 ft (100m) for 22 ga. wire.
- **C.** Connect wires to CH T-T terminals. Wires are interchangeable.

Low Water Cutoff (LWCO)

Factory installed.

NOTICE

Boiler transformer does not have adequate VA to power accessories, other than factory supplied LWCO.

FIGURE 8-3 Isolation Relays for CH System Pump and DHW Pump

FIGURE 8-4 External Connections (Do not apply external voltage to external terminals.)
9 - START UP PROCEDURE

NOTICE

9.1 Fill Boiler With Water And Purge Air

NOTICE

To maintain boiler efficiency and prevent boiling inside the heat exchanger, flush entire heating system until clean.

- Flush heating system, including all heating zones.
- Fill boiler with potable water.
- Fill boiler and system piping with water (or antifreeze-water solution, if used). See antifreeze information page 13. Purge air from boiler using safety relief valve. Purge air from system piping.
- Inspect system piping and boiler connections. Repair any leaks immediately.
- Activate all heating zones and calls for heat, including CH calls and DHW calls (if available).
- Close manual gas shut off valve. Let system run for 30 minutes. When boiler goes into lockout, reset boiler by pressing "Reset" button until boiler resets.
- Do not open gas shutoff valve until all air is purged from system.

9.2 Fill Condensate Trap with Water

- Remove spring tension clip from clear hose attached to barbed fitting at bottom of flue collector. See figure 9-1.
- Disconnect hose from barbed fitting.
- Fill trap through fitting with approximately 2 cup (473 ml) water.
- Place hose barbed fitting back through bottom of chassis.
- Reassemble clear tube to barbed fitting.
- Secure tube to barbed fitting with spring tension clip. See figure 9-1.
9 - Start Up Procedure

9.3 Program Boiler Control

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
<td>- Manual Lockout Reset</td>
</tr>
<tr>
<td>Menu</td>
<td>- Enter/Exit user menu</td>
</tr>
<tr>
<td></td>
<td>- Go to previous screen</td>
</tr>
<tr>
<td>Enter</td>
<td>- Select a menu item</td>
</tr>
<tr>
<td></td>
<td>- Confirm new parameter value</td>
</tr>
<tr>
<td></td>
<td>- Scroll up to next menu item</td>
</tr>
<tr>
<td></td>
<td>- Increase value</td>
</tr>
<tr>
<td></td>
<td>- Scroll down to next menu item</td>
</tr>
<tr>
<td></td>
<td>- Decrease value</td>
</tr>
</tbody>
</table>

Boiler is factory programmed with following factory default settings, Table 10. Parameters can be adjusted to suit particular application using the user interface. See figure 9-2. Detailed explanation of each can be found in Appendix A - Control Module.

Record new values in space provided for future reference, in event of factory default parameters are changed.

Table 10 - Default Parameters

<table>
<thead>
<tr>
<th>Control Parameter</th>
<th>Factory Default Setting</th>
<th>Setting Range</th>
<th>*Actual Parameter Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Menu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Heating Setpoint</td>
<td>140°F</td>
<td>60°C</td>
<td>104-195°F</td>
</tr>
<tr>
<td>DHW Setpoint</td>
<td>180°F</td>
<td>82°C</td>
<td>104-195°F</td>
</tr>
<tr>
<td>Temperature Units</td>
<td>°F</td>
<td>°F/°C</td>
<td></td>
</tr>
<tr>
<td>Boiler Configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler Address</td>
<td>0</td>
<td>0-15</td>
<td></td>
</tr>
<tr>
<td>Low Water Cutoff</td>
<td>External</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Pump Mode</td>
<td>0</td>
<td>0 & 4</td>
<td></td>
</tr>
<tr>
<td>Service Reminder Status</td>
<td>On</td>
<td>ON/OFF</td>
<td></td>
</tr>
<tr>
<td>Service Reminder Days</td>
<td>365 Days</td>
<td>1- 999 Days</td>
<td></td>
</tr>
<tr>
<td>Installer Menu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH Settings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH Mode</td>
<td>1</td>
<td>0, 1, 2, 3</td>
<td></td>
</tr>
<tr>
<td>Warm Weather Shutdown</td>
<td>70°F</td>
<td>21°C</td>
<td>35-100°F</td>
</tr>
<tr>
<td>Reset Curve Design Temperature - Boiler</td>
<td>180°F</td>
<td>82°C</td>
<td>60-195°F</td>
</tr>
<tr>
<td>Reset Curve Design Temperature - Outdoor</td>
<td>25°F</td>
<td>-4°C</td>
<td>-60-32°F</td>
</tr>
<tr>
<td>Reset Curve Mild Weather Temperature - Boiler</td>
<td>100°F</td>
<td>37°C</td>
<td>35-120°F</td>
</tr>
<tr>
<td>Reset Curve Mild Weather Temperature - Outdoor</td>
<td>70°F</td>
<td>21°C</td>
<td>35-85°F</td>
</tr>
<tr>
<td>Reset Curve Boiler Minimum Temperature</td>
<td>70°F</td>
<td>21°C</td>
<td>40-180°F</td>
</tr>
<tr>
<td>Reset Curve Boiler Maximum Temperature</td>
<td>180°F</td>
<td>82°C</td>
<td>80-195°F</td>
</tr>
<tr>
<td>Boost Function Temperature</td>
<td>0°F</td>
<td>0°C</td>
<td>0-36°F</td>
</tr>
<tr>
<td>Boost Function Time</td>
<td>20 Minutes</td>
<td>1-120</td>
<td></td>
</tr>
<tr>
<td>Maximum Power CH</td>
<td>100%</td>
<td>1-100%</td>
<td></td>
</tr>
</tbody>
</table>
| *List parameters when factory default settings are changed.*

P/N 240010943, Rev. C [09/07/2016]
9.4 Boiler Start-up and Operational Test
1. Verify air is purged from hydronic piping
2. System test pumps - verify each pump is operational using vibration, noise and amp draw.
3. Verify gas piping
 • Confirm pressure test. See section 7.3.
 • Visually inspect piping to determine there are no open fittings or ends, and all valves at unused outlets are closed and plugged/capped.
 • Purge air from piping. Confirm there is a steady gas supply to the boiler.
 • Check piping and connections for leaks immediately after gas is turned on. Shut off gas supply and make necessary repairs if leaks found.
4. Follow OPERATING INSTRUCTIONS to initiate boiler operation. See section 10.
5. Inspect combustion air and vent piping. Verify pipe is not leaking and terminations are unobstructed and vent gas discharge is not a nuisance or hazard.
6. Verify boiler functions.
7. Inspect condensate disposal system. Verify condensate flows adequately and is disposed properly.
8. Check control module operation.
9. Check field sourced limits, low water cutoffs, etc. per manufacturer's instructions.

9.5 Check Firing Rate
1. Measure input, if a gas meter is installed in the system.
 • Turn off gas to all other appliances.
 • Activate some heating zones to dissipate heat.
 • Set boiler on high fire.
 • Use ½, 1 or 2 cu ft dial on gas meter. Measure time required for two or more complete revolutions. Measure time for one or more minutes.
 • Calculate input.

For Natural Gas:
\[
\text{Input (MBH)} = \frac{3600 \times \text{cu ft}}{\text{seconds}}
\]

Example: Natural Gas - Gas flow from Meter = 2 cu ft
Measured time = 18 seconds
\[
\text{Rate (MBH)} = \frac{3600 \times 2 \text{ cu ft}}{18 \text{ seconds}} = 400 \text{ MBH}
\]

For Propane (LP):
\[
\text{Input (MBH)} = \frac{9160 \times \text{cu ft}}{\text{seconds}}
\]

For Metric formulas- See Glossary

2. Compare measured input to Table 12. If calculated input is not in range given in Table 12, check firing rate again after setting the combustion following steps in section 9.6.

Table 12 - Rate @ High Fire

<table>
<thead>
<tr>
<th>Size</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>399</td>
<td>380</td>
<td>407</td>
</tr>
</tbody>
</table>

9.6 Combustion Adjustment
Calibrated Combustion Analyzer is necessary for the following combustion adjustment.

\begin{center}
\textbf{NOTICE}
\end{center}

Before setting combustion in HIGH fire, activate all heating zones to dump heat generated by the boiler running on high fire.

1. Enter installer menu (Enter + Menu buttons for 4 seconds).
 A. Scroll down to System Test.
 B. Push Enter button to enter System Test. When “System Test Off” displays, push Enter button and “Off” will start flashing.
 C. Scroll up to High Power and push Enter. “High Power” will stop flashing and becomes solid.
 D. Unit is now locked in high fire.
2. Perform combustion test on HIGH fire using calibrated combustion analyzer. Adjust CO2 to within specifications by rotating the Throttle Screw, counterclockwise to increase CO2 level, clockwise to decrease CO2 level. See Figure 9-3 and 9-6.

After adjusting CO2 to correct level, verify:
(1) CO PPM level is in specified range and
(2) flame signal is in specified range. See Appendix A page 76.

CO2 level, CO PPM level, and flame signal for HIGH fire are given in the following tables.

<table>
<thead>
<tr>
<th>Gas</th>
<th>CO2</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>9.2</td>
<td>9.8</td>
</tr>
<tr>
<td>Propane</td>
<td>10.0</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Adjust Offset Screw slowly and in small steps, no more than 1/8 of a turn each time. See Figure 9-3 and 9-6.

Perform combustion test on LOW fire using calibrated combustion analyzer. Adjust CO2 to within specifications by turning Offset Screw, clockwise to increase CO2 level, counterclockwise to decrease CO2 level. After adjusting CO2 to correct level, verify:
(1) CO PPM level is in specified range and
(2) flame signal is in specified range.

CO2 level, CO PPM level, and flame signal for LOW fire see following tables.
4. See Figure 9-4 for location of Offset Screw on modulating gas valve of various boiler models. T40 male Torx bit is necessary for removal of Offset Screw cap and adjustment of Offset Screw.

5. Set boiler to High Power using System Test to confirm combustion in High Fire (Step 2).

6. Combustion setting is now complete.
 A. Exit System Test mode by pushing Enter. High Power will start flashing.
 B. Scroll down to “OFF”. Push Enter button “OFF” stops flashing.
 C. Push Menu button twice to escape Installer Manual. Boiler returns to CH mode or DHW mode depending on type of call for heat available.

7. Check ignition quality 4 times with front jacket off. Close internal manual gas valve for 5 seconds and then re-open it. Boiler will go through post purge – prepurge – ignition sequence. Reset boiler if boiler goes into lockout.

8. Check ignition quality 4 times with the front jacket on. Close the external gas shutoff valve for 5 seconds and re-open it. Boiler will go through a post purge – prepurge – ignition sequence. Reset the boiler if boiler goes into lockout.

LOW fire combustion - 399 MBH

<table>
<thead>
<tr>
<th>Gas</th>
<th>CO2 Min</th>
<th>CO2 Max</th>
<th>CO Design Target</th>
<th>CO CO2</th>
<th>Flame Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>8.8%</td>
<td>9.2%</td>
<td>9.0%</td>
<td><100ppm</td>
<td>>4.5</td>
</tr>
<tr>
<td>Propane</td>
<td>9.8%</td>
<td>10.5%</td>
<td>10.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: LOW fire combustion - 399 MBH

- **Gas**
- **CO2 Min**
- **CO2 Max**
- **CO Design Target**
- **CO**
- **Flame Signal**

Table Data

- Natural Gas: CO2 Min 8.8%, CO2 Max 9.2%, CO Design Target 9.0%, CO CO2 <100ppm, Flame Signal >4.5
- Propane: CO2 Min 9.8%, CO2 Max 10.5%, CO Design Target 10.0%
9.7 Perform CSD-1 Compliance Test (see paragraph 2.4 page 6)

Verify operation of boiler safety control operation with regard to no flow conditions as follows:

1. Turn off boiler using boiler service switch.
2. Disable general boiler pump. Disconnect multi pin connector J7 from control module. See Figure 9-7.
3. Disable secondary system pumps attached to system.
5. Boiler will fire. Based on natural convection within boiler, boiler will either:
 OR
 B. Shut off burner E40 "Return Water Temp". This is a soft lockout. When water temperature drops below limit boiler will automatically refire then Lockout A-06 requiring manual reset of control module. Press Reset button on User Interface.
 OR
 C. Shut off burner E39 "Flue Temperature Sensor". This is a soft lockout. When flue sensor drops below limit, boiler will automatically refire then Lockout A-06 requiring manual reset of control module. Press Reset button on User Interface.
6. After safety operation is verified, turn off boiler via service switch. Remove jumper in T-T. Replace J7 connector into control module, enable secondary pump operation, turn service switch on and restart system to verify operation.
7. Verify low water cutoff (LWCO) is functional. Push test button, hold for 30 seconds. LWCO light will blink indicating low water and boiler in lockout. Push button again to reset.

WARNING

Asphyxiation hazard. Carbon monoxide is odorless, tasteless, clear colorless gas, which is highly toxic. Verify cap is firmly placed on combustion analyzer port to prevent CO emission. Failure to do so could result in death or serious injury.

FIGURE 9-5 Combustion Analyzer Port

FIGURE 9-6 Burner Flame
9.8 Complete Start Up Procedure

1. Reset control parameters to operating settings if adjusted to allow startup and operation test.

2. Follow instructions TO TURN OFF GAS TO APPLIANCE (page 41) if boiler is not being placed into immediate operation.

3. Enter installer information on Warranty Registration Card.

4. Gather all instructions, manuals, wiring diagrams, warranty registration card and other supporting information. Review with user and/or affix in conspicuous location adjacent to boiler.
FOR YOUR SAFETY READ BEFORE OPERATING

WARNING

If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

- This appliance is equipped with an ignition device which automatically lights burner. **Do NOT try to light this burner by hand.**
- Before operating smell all around appliance area for gas. Be sure to smell next to floor because some gas is heavier than air and will settle to the floor.
- **Use only your hand to turn the gas shutoff valve.** Never use tools. If valve will not turn by hand, do not try to repair it, call a qualified service technician. Force or attempted repair may result in fire or explosion.
- **Do not use this appliance if any part has been under water.** Immediately call a qualified service technician to inspect appliance and to replace any part of control system and any gas control which has been under water.

10.1 OPERATING INSTRUCTIONS

Stop! Read Safety information above.

- Set thermostat to lowest setting.
- Turn "OFF" all electrical power to appliance.
- This appliance is equipped with an ignition device which automatically lights the burner. **Do not try to light burner by hand!**
- Remove front jacket panel.
- Turn gas shutoff valve to closed position. Handle should be perpendicular to gas pipe.
- Wait 5 minutes for any gas to clear. Smell for gas, including near floor. If you smell gas, **STOP!** Follow instructions on this page: "**What To Do If You Smell Gas.**" If you do **not** smell gas, go to next step.
- Turn gas shutoff valve to the open position. Handle should be parallel to gas pipe.
- Replace front jacket panel.
- Turn "ON" electrical power to appliance.
- Set thermostat to desired setting.
- If the appliance will not operate, follow instructions TO **TURN OFF GAS TO APPLIANCE** and call your service technician or gas supplier.

10.2 TO TURN OFF GAS TO APPLIANCE

- Set thermostat to lowest setting.
- Turn "OFF" all electric power to appliance if service is to be performed.
- Remove front jacket panel.
- Turn gas shutoff valve handle to closed position. Handle should be perpendicular to gas pipe.
- Replace front jacket panel.

FIGURE 10-1 Gas Shutoff Valve

![Diagram of gas shutoff valve]

OPEN POSITION

CLOSERD POSITION

CAUTION

WHAT TO DO IF YOU SMELL GAS

- Do not try to light any appliance.
- Do not touch any electrical switch; do not use any phone in your building.
- Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions.
- If you cannot reach your gas supplier, call the fire department.
11.1 **Beginning of Each Heating Season**

- Check boiler area is free from combustible materials, gasoline, and other flammable vapors and liquids.
- Visually inspect combustion air and vent piping for proper operation. Check for and remove any obstruction to flow of combustion air or vent gases. Immediately repair or replace pipe showing deterioration or leakage. Reassemble per instructions in section 6. Ensure proper reassembly and resealing of system.
- Visually inspect condensate drain line for proper operation. Checking for deteriorated or plugged condensate drain line. Verify condensate trap drains freely.
- Test safety relief valve for proper operation. Refer to valve manufacturer's instructions packaged with relief valve.
- Examine flue passages in heat exchanger, burner, condensate lines, and cleaning (if necessary) by following instructions in “Annual Examination and Cleaning of Boiler Components” in this section.
- Combustion air blower motor furnished with boiler are permanently lubricated from factory and require no further lubrication. Lubricate field sourced pumps and/or motors according to pump and/or motor manufacturer's instruction.
- Check following components are operating properly and are free of blockages or obstructions:
 A. system air vent;
 B. check venturi air inlet for blockage and clean as required;
 C. verify pressure test port cap and combustion test port are in place;
 D. return temperature sensor clip must be securely seated on pipe; Check boiler for any sign of leaks.
- Check low water cutoff according to manufacturer instructions.
- Check flame signal with user interface. Should be 8 micro amps at 100% firing rate (High fire).
- Visual inspection of flame through sight glass. Burner should be fully illuminated. See figure 11-1.
- Check heating system expansion tank.

FIGURE 11-1 Sight Glass

Sight Glass
11.2 Annual Shut Down Procedure

- Follow instructions “To Turn Off Gas To Appliance” unless boiler is also used to supply domestic hot water. See section 10.
- Drain system completely if system does not have antifreeze when heating system is to remain out of service during freezing weather.
- Drain condensate lines when boiler is to be exposed to freezing temperatures.

WARNING

Following service procedures must be performed by qualified service agent. Boiler owner shall not attempt these steps. Failure to do so could result in death or serious injury.

11.3 Annual Inspection and Cleaning of Boiler Components

- Obtain Burner Inspection Kit. Follow kit instructions to prepare for examination and cleaning.
- Burner and heat exchanger inspection and cleaning.
 A. Remove gasket and burner. Allow burner to clear top lip of chassis.
 B. Remove any residual sleeve and/or gasket material from removed burner.
 C. Clean burner using air hose directed into top of burner opening to dislodge any debris in burner ports. Inspect burner for foreign matter in flame ports or inside burner. Remove foreign matter by blowing with compressed air or vacuuming. Replace burner if it cannot be cleaned or is showing deterioration.
 D. Clean heat exchanger with low pressure water spray. Use flexible handle nylon brush to loosen sediment and oxide on all accessible heating surfaces of heat exchanger. Take care not to get brush stuck in heat exchanger.
 E. Remove any remaining loosened sediment using shop vacuum with snorkel attachment.
 F. Flush condensate collector if significant debris found in heat exchanger.
 G. Expand upper spring tension clip of condensate trap using hose clamp pliers. Disconnect condensate trap from condensate collector. See Figure 11-2.
 H. Disconnect wire harness from vent temperature sensor. See figure 11-2.
 I. Flush collector and condensate trap with water. Allow water to drain through condensate collector port.
- Follow Burner Inspection Kit instructions to reassemble boiler and resume operation.
12.1 Ratings and Capacities

- Constructed and hydrostatically tested for maximum allowable working pressure of 150 psig (pounds per square inch gauge) (1035 kPa) in accordance with ASME Boiler and Pressure Vessel Code, Section IV, Rules for Construction of Heating Boilers.

- Ratings used for elevations up to 2000 ft (600m) above sea level.

- For elevations between 2000 ft (600m) and 4500 ft (1350m), install high altitude control kit

- For elevations above 4500 ft (1350m) install high altitude control kit and:
 - USA - Reduce input rate 4% for each 1000 ft (300m) beyond 4500 ft.
 - Canada - Contact Provincial authority having jurisdiction for installations above 4500 feet (1350 m) above sea level.

Table 13 - Sea Level Ratings

<table>
<thead>
<tr>
<th>Size</th>
<th>Boiler Input Rate (MBH)(^{(1)})</th>
<th>Gross Output (MBH)(^{(1)(2)})</th>
<th>Net AHRI Rating, Water (MBH)(^{(1)(3)})</th>
<th>Thermal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>399</td>
<td>399</td>
<td>80</td>
<td>383</td>
<td>333</td>
</tr>
</tbody>
</table>

\(^{(1)}\) 1000 Btu/hr (British Thermal Units Per Hour)

\(^{(2)}\) Gross Output and Thermal Efficiency is based on DOE (Department of Energy) test procedures.

\(^{(3)}\) Net AHRI Ratings based on piping and pickup allowance of 1.15. Contact Technical Support before selecting boiler for installations having unusual piping and pickup requirements, such as intermittent system operation, extensive piping systems, etc.
13 - TROUBLE SHOOTING

If boiler does not function.

Remove Jacket.
Is User Interface lit?

NO	YES

Check for 120 vac in boiler high voltage terminal box.
Is 120 vac present?

NO	YES

Check power supply to boiler. Check breakers, disconnect and emergency switch for voltage. Fix or repair external wiring.

Locate fuse holder on front of control and pull to check fuse. Spare fuse located on controller. Make sure all wire harness plugs are properly pushed in. Release plug lock with finger, remove and reconnect all 7 plugs. Check wiring from User Interface to Low Voltage Terminal Strip including checking continuity of wires. Does User Interface Display work?

NO	YES

Remove User Interface from base. Using Digital Voltmeter check for 25 to 30 Vdc. Is voltage present?

NO	YES

Replace Control Module

Replace User Interface

Does display show "Standby - No Demand?"

YES	NO

There is no call for heat or hot water. Check thermostat. Outdoor air sensor may be faulty - boiler in warm weather shutdown.

GO TO NEXT PAGE
<table>
<thead>
<tr>
<th>Screen Display</th>
<th>Explanation</th>
<th>Go to Page For Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lockout Alarm A 0 0</td>
<td>Control has blocking error for more than 20 hours in a row.</td>
<td>Go to Page 47</td>
</tr>
<tr>
<td>Lockout Ignit Error A 0 1</td>
<td>Thirty five unsuccessful ignition attempts in a row</td>
<td>Go to Page 48</td>
</tr>
<tr>
<td>Lockout GV Relay Error A 0 5</td>
<td>Open gas valve power circuit. May involve high temperature switch, gas valve, or gas valve relay in control module.</td>
<td>Go to Page 47</td>
</tr>
<tr>
<td>Lockout Safety Relay Error A 0 6</td>
<td>Safety Circuit is open.</td>
<td>Go to Page 49</td>
</tr>
<tr>
<td>Lockout Fan Error A 0 8</td>
<td>Blower speed does not reach speed calculated by Control Module.</td>
<td>Go to Page 50</td>
</tr>
<tr>
<td>Lockout A 0 9 to A 1 4 Various Text Messages</td>
<td>Control Module internal error.</td>
<td>Replace Control Module</td>
</tr>
<tr>
<td>Lockout A 1 8 Max Temp Error</td>
<td>High Temperature opens during normal operation.</td>
<td>Go to Page 51</td>
</tr>
<tr>
<td>Lockout Flame Out Too Late A 2 0</td>
<td>Control Module detects flame after gas valve is closed more than 10 seconds.</td>
<td>Replace Gas Valve</td>
</tr>
<tr>
<td>Lockout Flame Error 1 A 2 1</td>
<td>Flame is detected before gas valve opens.</td>
<td>Replace Gas Valve</td>
</tr>
<tr>
<td>Lockout A 2 2 A 2 3 Various Text Messages</td>
<td>Control module internal error.</td>
<td>Replace Control Module</td>
</tr>
<tr>
<td>Lockout A 2 4 3 Flame Failures</td>
<td>Lost flame signal 3 times during one heat call.</td>
<td>Go to Page 52</td>
</tr>
<tr>
<td>Lockout A 2 7 to A 3 0 Various Text Messages</td>
<td>Control Module internal error.</td>
<td>Replace Control Module</td>
</tr>
<tr>
<td>Blocking Error E 3 1 to E 3 4 Various Text Messages</td>
<td>Control Module internal error.</td>
<td>Replace Control Module</td>
</tr>
<tr>
<td>Blocking Error E 3 3 REFLO too LO</td>
<td>External voltage supplied to DHW T-T or CH T-T terminals. Eliminate voltage using dry contact relay.</td>
<td>-</td>
</tr>
<tr>
<td>F P Blocking Error E 3 5 False Flame Detect</td>
<td>Flame detected when gas valve is closed.</td>
<td>Go to Page 52</td>
</tr>
<tr>
<td>Screen Display</td>
<td>Explanation</td>
<td>Go to Page For Troubleshooting</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Low water cutoff sees no water.</td>
<td>Go to Page 53</td>
</tr>
<tr>
<td>Low Water Cutoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Flue temperature sensor sees temperature higher than 200°F.</td>
<td>Go to Page 54</td>
</tr>
<tr>
<td>Flue Gas Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Return water temperature sensor sees temperature higher than 200°F.</td>
<td>Go to Page 55</td>
</tr>
<tr>
<td>Return Temp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Control board internal error. Power down then power up boiler. If error repeatedly occurs replace control module.</td>
<td>Replace Control Module</td>
</tr>
<tr>
<td>Various Text Messages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Boiler is powered by three wires, hot, neutral and ground. E44 displays when neutral wire is not neutral.</td>
<td>Go to Page 55</td>
</tr>
<tr>
<td>Phase Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Control board sees power supply frequency not in range of 59 to 61 Hz.</td>
<td>Go to Page 56</td>
</tr>
<tr>
<td>Net Freq Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Boiler power supply ground wire is not grounded.</td>
<td>Go to Page 57</td>
</tr>
<tr>
<td>Faulty Earth Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Control board internal error. Power down then power up boiler. If error repeatedly occurs replace control module.</td>
<td>Replace Control Module</td>
</tr>
<tr>
<td>Various Text Messages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Supply temperature sensor is open. No continuity.</td>
<td>Go to Page 57</td>
</tr>
<tr>
<td>Supply Sens Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Return water temperature sensor is open. No continuity.</td>
<td>Go to Page 58</td>
</tr>
<tr>
<td>Return Sens Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Flue temperature sensor is open. No continuity.</td>
<td>Go to Page 59</td>
</tr>
<tr>
<td>Flue Sens Shorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Supply water temperature sensor is shorted. '0' Ohm</td>
<td>Go to Page 59</td>
</tr>
<tr>
<td>Supply Sens Shorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Return water temperature sensor is shorted. '0' Ohm</td>
<td>Go to Page 60</td>
</tr>
<tr>
<td>Return Sens Shorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Flue temperature sensor is shorted. '0' Ohm</td>
<td>Go to Page 60</td>
</tr>
<tr>
<td>Flue Sens Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Reset button was pressed too many times. Error Clears in 1-2 minutes</td>
<td>Go to Page 60</td>
</tr>
<tr>
<td>Reset Button Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking Error</td>
<td>Fault detected in blower motor system.</td>
<td>Go to page 56</td>
</tr>
<tr>
<td>Various Fan Error Te; E 81, 88, 89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lockout Alarm A 0 0
Blocking too long error

Enter Installer Menu, Boiler Status. Scroll to most recent Lockout Alarm or Blocking Error. Diagnose corrective action using appropriate Troubleshooting Tree.

Lockout Alarm
GV relay error

Unplug connector on supply sensor. Measure continuity of high limit sensor (close/open signal) between two pins connected to two purple wires. Is continuity available?

YES

Is wire harness connected to both Gas Valve and J13 connector on Control Module?

YES

Disconnect J13 connector on gas valve. Measure resistance across top and bottom pins (1 & 5). Is resistance between 1.0 and 1.2 kΩ?

YES

Disconnect harness from Gas Valve. Does each wire have continuity between Gas Valve and Control Module?

YES

Replace Control Module

NO

Replace Gas Valve

NO

Replace Harness

NO

Connect harness

Is supply pipe heat exchanger hot?

YES

Boiler has been dry fired. System has too much air. Close manual gas valve (shut off gas). Purge air from system, wait for system to cool.

NO

Replace Supply Sensor
13 - TROUBLESHOOTING

Lockout Alarm A 01

Ignit error

- **Is this a new boiler on first startup?**
 - **YES**
 - **NO**

- **Is this boiler to run with propane gas?**
 - **YES**
 - **NO**

- **Has the gas valve been adjusted per instructions?**
 - **NO**
 - **YES**

- **Enter the Installer Menu and place the boiler into test mode in high fire. Once the boiler starts, go to the boiler status screen and monitor the flame signal. Is the flame signal greater than 7.0uA when running on high fire?**
 - **YES**
 - **NO**

- **Does the boiler ignite and stay running?**
 - **YES**
 - **NO**

- **Remove the flame sensor and igniter and inspect. Is there any indication of damage or debris baked on?**
 - **YES**
 - **NO**

- **Check vent termination for proper consideration of wind effects**

- **Replace/clean flame sensor or igniter**

- **Reset the boiler by pressing the 'Reset' button. When the boiler tries to ignite, is there a strong, consistent spark evident through the sight glass?**
 - **YES**
 - **NO**

- **Disconnect the gas valve electrical harness and close the gas shutoff valve. With the ignition lead connected to the igniter, hold the tip near the chassis ground and attempt ignition. Is a spark observed between the igniter and ground?**
 - **YES**
 - **NO**

- **Check all wires including the igniter and flame sensor leads. Check for proper and tight connections to control board. Are all wires connected?**
 - **YES**
 - **NO**

- **Open gas shutoff valves**

- **Inspect Vent System for blockages. Is the vent system clear?**
 - **YES**
 - **NO**

- **Clear vent blockage**

- **Inspect the flue way along the sides of the baffle near the coil for blockages. Is there any apparent debris or obstruction of the flue way?**
 - **YES**
 - **NO**

- **Refer to the Gas Valve Troubleshooting Tree**

- **Adjust gas valve throttle and offset per instructions.**

- **Refer to the Heat Exchanger cleaning section**

- **Replace Burner**

- **Replace Control Module**

- **Replace/clean flame sensor or igniter**

- **Connect all wires and check for secure fit**

- **Refer to the Gas Valve Troubleshooting Tree**
Error shows when safety circuit is open. Remove J13 connector from control module. Check for continuity between two pins connected to two pink wires, is continuity available?

Replace Control Module

Unplug molex connector on supply temperature sensor. Check continuity between two pins on sensor (two pins connected to two pink wires). Is continuity available?

Replace Broken Switch

Check for loose connections on two pink wires on J13 connector, supply sensor, and safety temperature switch.

Fix Loose Connections

Is boiler supply pipe (above heat exchanger) hot?

Let all zones run until water temperature drops.

Is Heat Exchanger surface hot?

Wait for boiler to cool down.

Boiler fired without enough water flow through heat exchanger. Heat exchanger is over heated. Either high limit or heat exchanger temperature switch is open.

Check the following:
- Air in system?
- Verify water flow in system piping
- Flush system if water is dirty.
13 - TROUBLE SHOOTING

Lockout Alarm A 0 8
Fan error

Is Combustion Air Blower operating?

YES NO

Disconnect 4-wire harness from Combustion Air Blower. Does Combustion Air Blower speed increase?

YES NO

Disconnect harness from Control Module J9. Continuity in each wire of 4-wire harness (yellow, red, white, black)?

YES NO

Replace Control Module Replace harness

Replace Combustion Air Blower

Are 3-wire and 4-wire harnesses connected to Combustion Air Blower?

YES NO

Disconnect harness from Control Module J9 connector. Measure voltage between two pins, J9-2 and J9-3 on Control Module (second and third pins of J9, count from outside). Is voltage 120 Vac =/- 10% available?

YES NO

Replace Control Module

Replace harness

Replace Combustion Air Blower

Connect harness

Replace harness
Disconnect harness from High Temperature Supply Switch and Control Module J13.
Check continuity of both purple wires. Continuity available for both purple wires?

YES
- Is supply water temperature less than 185°F (91°C)?
 YES Replace wire(s)
 NO

NO
- Is High Temperature Supply Switch open (no continuity between terminals 1 and 3)?
 YES
 - Replace High Temperature Supply Switch
 NO
 - Measure resistance across High Temperature Supply Switch terminals 2 and 4?
 Does resistance match supply water temperature (see table)?
 YES
 - Replace Control Module
 NO
 - Replace High Temperature Supply Switch

See Thermistor Resistance Chart - Page 61 of this manual
Lockout Alarm A 2 4
3 flame failures

Inspect harness connection
Flame Sensor. Is connection
clean and secure?

YES NO

Inspect burner through sight
glass. Is flame present?

YES NO

NO

Blocking Error E 3 5
False flame detect

Replace Control
Module

NO

Remove Flame Sensor. Is rod
free of contamination?

YES

NO

Turn off manual gas
shutoff valve.
Follow instructions
TO TURN OFF GAS TO
APPLIANCE. Replace
Gas Valve.

Replace Control
Module

Replace Flame
Sensor and Burner

Replace Control
Module

Clean or replace
Flame Sensor

Follow Operating Instructions
to initiate boiler operation.
Enter Installer Menu, Boiler
Status, Flame Signal.
Is flame signal greater than
3.7µA
(Boiler may be running at any
firing rate)?

YES

NO

Follow Operating Instructions
to initiate boiler operation.
Enter Installer Menu, Boiler
Status, Flame Signal.
Is flame signal greater than
3.7µA
(Boiler may be running at any
firing rate)?

YES

NO

Enter Installer Menu, Boiler
Status, Flame Signal.
Is flame signal greater than
3.7µA
(Boiler may be running at any
firing rate)?

YES

NO

Replace Control
Module

Replace Flame
Sensor or harness

Replace Flame
Sensor and Burner

Replace Control
Module
13 - TROUBLE SHOOTING

Is LWCO installed?

NO YES

Install LWCO wire to low Voltage terminal strip LWCO connections.

Verify system is filled with water.

YES NO

Disconnect LWCO from low voltage terminal strip. Check for continuity through LWCO safety circuit. Continuity?

YES NO

Fill system with water. Press Reset button on Low Water Cutoff.

Check low voltage terminal strip connections. Verify J16 connector is connected. Verify continuity between low voltage terminal strip LWCO connections and J16-1 and J16-4. Continuity?

NO YES

Check LWCO per manufacturer's instructions repair or replace.

Replace Wire Harness Replace Control Module
13 - TROUBLE SHOOTING

Read flue gas temperature on User Interface.
Is temperature higher than 200°F?

YES NO

Boiler is over fired. Wait for boiler to cool. Fix flow rate problem if any, purging all air out of the system.

Use thermcouple to measure flue gas temperature through sampling port. Is the measured temperature and flue temperature reading on User Interface significantly different?

YES NO

Replace Flue Gas Sensor Replace Control Module
13 - TROUBLE SHOOTING

Blocking Error E 4 0
Return Temp

- Is correct harness connected to return sensor (2 Brown Wires)?
 YES NO
 Unplug molex connector on return sensor. Is there moisture or liquid on metal pins? Liquid might be water or antifreeze solution.
 YES NO
 Remove all liquid from connector. Check for leaks. Repair all leaks.

- Is Primary Pump properly oriented?
 YES NO
 Disconnect harness from Return Water Sensor. Measure resistance using digital ohm meter. Is resistance between 950 to 33,000 ohms?
 YES NO
 Replace Control Module
 Replace Return Water Sensor

Replace Control Module

Blocking Error E 4 4
Phase error

- Measure incoming power with volt meter. Is terminal 120 VAC (L) approximately 120 VAC? Is 120 VAC (N) approximately 0 VAC?
 YES NO
 Correct power supply to Boiler
 Verify order of pins on J2. Pin order should be: empty, black (or red), white, green. Measure volts on pins of black wire and white wire. Is wiring/pins in right order? Does black/wire have 120 VAC? Does white wire/pin have 0 VAC?
 YES NO
 Replace Control Module
 Replace Wire Harness
These error messages are displayed when the control board detects fault in blower motor system. Check connector J9 on control board. Is any connection loose?

- **YES**
 - Replace blower motor. Does this correct the problem?
 - **YES**
 - Boiler is operating properly
 - **NO**
 - Replace Control Module

- **NO**
 - Fix the connection.
 - Replace Control Module
13 - TROUBLESHOOTING

See Thermistor Resistance Chart - Page 61 of this manual
13 - TROUBLESHOOTING

- Blocking Error E 5 2
 - Return Sens Open

Is harness plugged into Return Temperature Sensor?
Is harness plugged into Control Module J5?

Check continuity of brown wires between Return Temperature Sensor and Control Module J5-4 and J5-12
Continuity?

Measure Return Temperature Sensor resistance with digital meter. Estimate Sensor temperature. Does temperature fall within ranges shown on chart?

Replace Return Temperature Sensor
Replace Control Module
Replace Wires
Insert Harness

See Thermistor Resistance Chart - Page 61 of this manual
13 - TROUBLE SHOOTING

Supply Water Temperature Sensor Resistance Chart

Disconnect wire harness from High Temperature Supply Switch. Measure resistance across terminals 2 and 4. Does temperature fall within ranges shown in chart?

See Thermistor Resistance Chart - Page 61 of this manual
13 - TROUBLESHOOTING

Disconnect harness from Control Module J5. Measure resistance between brown wires at terminals J5-4 and J5-12. Is resistance less than 50 ohms?

NO

Replace Control Module

YES

Disconnect harness from Control Module J5. Continuity in blue wires?

NO

Replace Control Module

YES

Disconnect wire harness from Vent Temperature Sensor. Measure Sensor resistance. Does resistance match estimated flue temperature?

NO

Replace Vent Temperature Sensor

YES

Replace wires

See Thermistor Resistance Chart - Page 61 of this manual
Thermistor Resistance Chart

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>Temperature °F</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32</td>
<td>36100</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>28590</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>22790</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
<td>18290</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>14770</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
<td>12000</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
<td>9805</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
<td>8055</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
<td>6653</td>
</tr>
<tr>
<td>45</td>
<td>113</td>
<td>5524</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
<td>4809</td>
</tr>
<tr>
<td>55</td>
<td>131</td>
<td>3863</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
<td>3253</td>
</tr>
<tr>
<td>65</td>
<td>149</td>
<td>2752</td>
</tr>
<tr>
<td>70</td>
<td>158</td>
<td>2337</td>
</tr>
<tr>
<td>75</td>
<td>167</td>
<td>1994</td>
</tr>
<tr>
<td>80</td>
<td>176</td>
<td>1707</td>
</tr>
<tr>
<td>85</td>
<td>185</td>
<td>1467</td>
</tr>
<tr>
<td>90</td>
<td>194</td>
<td>1265</td>
</tr>
<tr>
<td>95</td>
<td>203</td>
<td>1095</td>
</tr>
<tr>
<td>100</td>
<td>212</td>
<td>952</td>
</tr>
</tbody>
</table>
• **ANSI** - American National Standards Institute, Inc. oversees creation and maintenance of voluntary consensus standards, including ANSI Z21.13/CSA 4.9: Gas-Fired Low Pressure Steam and Hot Water Boilers.

• **ASTM** - American Society for Testing and Materials. ASTM International is one of largest voluntary standards development organizations in world trusted source for technical standards for materials, products, systems, and services. Known for their high technical quality and market relevancy, ASTM International standards have important role in information infrastructure that guides design, manufacturing and trade in the global economy.

• **AUTHORITY HAVING JURISDICTION** - Individual or organization adopting and enforcing codes, rules, and by-laws governing various concerns of community. Commonly referred to as "final authority" for any matters relating to LIFE SAFETY and BUILDING CONSTRUCTION within a community.

• **Btu** - Abbreviation for British Thermal Unit. Quantity of heat required to raise temperature of 1 pound of water 1°F.

• **BURNER** - Device for final conveyance of gas or mixture of gas and air, to combustion zone.

• **COMBUSTION** - Rapid oxidation of fuel gases accompanied by production of heat or light. Complete combustion of fuel is possible only in presence of adequate supply of oxygen.

• **COMBUSTIBLE MATERIAL** - Materials made of or surfaced with wood, compressed paper, plant fibers, or other materials capable of being ignited and burned. Such material shall be considered combustible even though flame-proofed, fire-retardant treated, or plastered.

• **CONDENSATE** - Liquid separated from flue gas due to reduction in temperature.

• **DIRECT VENT BOILER** - Boiler constructed and installed so all combustion air is derived directly from outdoors and all vent gases are discharged to outdoors.

• **DRAFT** - Pressure difference causes gases or air to flow through a chimney, vent, flue or appliance.

• **FLA** - Full load amps.

• **FLUE GASES** - Products of combustion plus excess air in appliance flues or heat exchanger.

• **GAS PIPE SIZES** - Size pipe per NFPA-54.

• **HIGH-VOLTAGE** - Circuit involving potential of not more than 600 volts and having circuit characteristics in excess of those of low-voltage circuit.

• **IGNITER** - Device utilizing electrical energy to ignite gas at main burner.

• **LEAK CHECK** - Operation performed on gas piping system to verify system does not leak.

• **LOW WATER CUTOFF** - Device constructed to automatically cut off fuel supply when surface of water in boiler falls to lowest safe water level.

• **LOW-VOLTAGE** - Circuit involving potential of not more than 30 volts.

• **METRIC GAS METERS**

 \[
 MBH = \frac{127,116 \times \text{cu meters}}{\text{Seconds}}
 \]

 For example: Gas Meter measures 0.1 cubic Meters in 100 seconds

 \[
 MBH = \frac{127,116 \times 0.1}{100} = 127 \text{ MBH}
 \]

• **PRESSURE TEST** - Operation performed to verify gas tight integrity of gas piping following its installation or modification.

• **PURGE** - To free gas conduit of air or gas, or mixture of gas and air.

• **PURGE TIME** - Period of time intended to allow for dissipation of any unburned gas or residual products of combustion.

• **QUALIFIED AGENCY** - Any individual, firm, corporation, or company engaged in and responsible for:

 - Installation, testing, or replacement of gas piping, or connection, installation, testing, repair or servicing of appliances and equipment.
 - Experienced in such work.
 - Familiar with all precautions required.
 - Complies with all requirements of authority having jurisdiction.
• **SAFETY RELIEF VALVE** - Valve designed to relieve pressure in hot water supply system when pressure exceeds pressure capability of equipment.

• **SAFETY SHUTOFF DEVICE** - Device that will shut off gas supply to controlled burner in event source of ignition fails.

• **SEDIMENT TRAP** - Gas piping arrangement designed to collect any liquid or solid contaminant before reaching gas valve.

• **VENT** - Passageway used to convey flue gases from appliance vent connector to outdoors.

• **VENTING SYSTEM** - Continuous open passageway from of appliance vent connector to outdoors for purpose of removing flue or vent gases.
1.1 **Introduction**

Boiler is equipped with programmable electronic control and user interface module.

1.2 **Operation**

- Display: 4 x 20 character LCD screen to show boiler status.
- Function Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
<td>- Manual Lockout Reset</td>
</tr>
<tr>
<td></td>
<td>- Enter/Exit user menu</td>
</tr>
<tr>
<td></td>
<td>- Go to previous screen</td>
</tr>
<tr>
<td>Enter</td>
<td>- Select a menu item</td>
</tr>
<tr>
<td></td>
<td>- Confirm new parameter value</td>
</tr>
<tr>
<td>+</td>
<td>- Scroll up to next menu item</td>
</tr>
<tr>
<td></td>
<td>- Increase value</td>
</tr>
<tr>
<td>-</td>
<td>- Scroll down to next menu item</td>
</tr>
<tr>
<td></td>
<td>- Decrease value</td>
</tr>
</tbody>
</table>

1.3 **Status Indication**

The following status screens can be displayed:

- **Boiler Status Indicator**
 - **F** = Flame Detected
 - **P** = Central Heating System pump On
 - **B** = Combustion Air Blower On
 - **S** = Safety Relay Check
 - **G** = Gas Valve Open
 - **D** = DHW Pump On

- **Combustion Air Blower Speed Indicator**

- **Service Reminder Indicator**
 - Boiler in Standby Mode
 - Boiler Supply Water Temperature Indicator.

- **Boiler Running in Central Heat mode**

- **Boiler Running in DHW mode**

- **Lockout Alarm Indicator**
 - Error code and short text description is displayed
 - Press 'Reset’ key for manual reset.

- **Blocking Error**
 - Error code and short text description is displayed
 - Boiler automatically returns to Standby Mode when condition is eliminated.
1.4 Sequence of Operation

<table>
<thead>
<tr>
<th>Operational State</th>
<th>User Interface Display</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Demand?</td>
<td>STANDBY: NO DEMAND</td>
<td>Boiler operates in standby mode until demand for Central Heat (CH) or Domestic Hot Water (DHW) is detected.</td>
</tr>
<tr>
<td></td>
<td>CENTRAL HEATING</td>
<td>CH or DHW pump is turned on based on type of heating demand.</td>
</tr>
<tr>
<td></td>
<td>CENTRAL HEATING</td>
<td>General boiler pump is activated for any heat call.</td>
</tr>
<tr>
<td></td>
<td>CENTRAL HEATING</td>
<td>Control Module compares supply Temperature to set point. Boiler proceeds to ignition if supply temperature is less than set point.</td>
</tr>
<tr>
<td></td>
<td>CENTRAL HEATING</td>
<td>Combustion Air Blower speed modulates to pre-purge setting for 15 seconds.</td>
</tr>
</tbody>
</table>

After 2 seconds

APPENDIX A - CONTROL MODULE
1.4 Sequence of Operation

<table>
<thead>
<tr>
<th>Operational State</th>
<th>User Interface Display</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 2 seconds</td>
<td>LOCKOUT ALARM A21</td>
<td>If flame detected before Gas Valve opens during ignition boiler will lockout. Please refer to troubleshooting guide.</td>
</tr>
<tr>
<td>Flame Detected?</td>
<td>FLAME ERROR 1</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>P B S G CENTRAL HEATING 65% 75°F</td>
<td>Gas Valve energized to deliver air/fuel to burner.</td>
</tr>
<tr>
<td>After 3 seconds</td>
<td>P B S G CENTRAL HEATING 65% 75°F</td>
<td>If flame undetected after 3 seconds boiler will de-energize Gas Valve and enter post purge mode for 30 seconds.</td>
</tr>
<tr>
<td>Flame Detected?</td>
<td>P B S G CENTRAL HEATING 5% 135°F</td>
<td>Boiler will run provided all operational and safety devices are within limits. Refer to for more information. Control module adjusts firing rate according to heating demand. When Boiler detects demand met, will enter post purge mode then standby mode.</td>
</tr>
<tr>
<td>No</td>
<td>F B S D DOMESTIC HOT WATER 100% 160°F</td>
<td>If simultaneous demand for Central Heat and DHW, boiler will enter DHW Priority Mode. Priority mode limits amount of time boiler can run in DHW mode to meet CH demand. Max DHW Priority Time setting determines maximum time allowed for DHW heating mode. Please refer to section Appendix A section 1.5 for more information.</td>
</tr>
<tr>
<td>Heat Demand Met?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Simultaneous DHW + CH Demand?</td>
<td>Yes</td>
<td>See Max DHW Priority Time Setting</td>
</tr>
</tbody>
</table>
1.5 User Menu

<table>
<thead>
<tr>
<th>User Interface Display</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDBY</td>
<td>Boiler operates in standby mode until demand for Central Heat (CH) or Domestic Hot Water (DHW) is detected.</td>
</tr>
</tbody>
</table>

User Menu (Press Menu button on user interface to access User Menu)

- **STANDBY**

<table>
<thead>
<tr>
<th>User Menu</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Menu</td>
<td>User Menu structure includes:</td>
</tr>
<tr>
<td></td>
<td>- ‘Boiler Status’ submenu– User can monitor general boiler status parameters such as sensor temperatures and pump operation.</td>
</tr>
<tr>
<td></td>
<td>- ‘Settings’ submenu – User can view CH, adjust DHW supply water set points and also select control language.</td>
</tr>
<tr>
<td></td>
<td>- ‘Cascade Status’ submenu – Boiler set to function as part of multiple boiler installation; submenu used to view runtime parameters. See Multiple Boiler Manual. (This line is not shown if boiler is not in cascade system).</td>
</tr>
</tbody>
</table>

- **Boiler Status**

<table>
<thead>
<tr>
<th>Boiler Status</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Temperature set point displayed.</td>
<td>If boiler running in CH mode, CH set point displayed.</td>
</tr>
<tr>
<td>Note:</td>
<td>- While running in Outdoor Reset mode, this value may change in proportion with the outdoor temperature.</td>
</tr>
<tr>
<td></td>
<td>- If the boiler is running in DHW mode, the DHW supply set point is displayed.</td>
</tr>
</tbody>
</table>

- **Several boiler runtime parameters can be viewed while in ‘Boiler Status’ submenu.**

- **Operational status of pump system also shown.**

- **Information available during all states of boiler operation. Sensor values with troubleshooting tree used to diagnose typical problems.**
APPENDIX A - CONTROL MODULE

<table>
<thead>
<tr>
<th>User Interface Display</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETTINGS
Central Heating Setpoint</td>
<td>Adjust CH set point to hydronic system design while in Operating in CH Mode = 0 (CH with Thermostat) or 3 (Permanent Demand).
In CH Mode = 1 (CH with Thermostat and Outdoor Reset) or 2 (CH with Full Outdoor Reset). Display will change to 'OD Reset Setpoint' and cannot be changed. Controller calculates set point based on outdoor temperature.
Note: For explanation of available CH heating modes, refer to ‘CH Mode’ section located in ‘CH Settings’ submenu in Installer Menu.</td>
</tr>
<tr>
<td>Setting Range: 104° F to 195° F (40° C to 91° C)
Default Value: 140° F (60° C)</td>
<td></td>
</tr>
</tbody>
</table>

| **SETTINGS**
DHW Setpoint | DHW set point determines supply water temperature set point while operating in DHW mode.
User interface temperature unit of measure is selected using ‘Change Temperature Units’ screen.
Fahrenheit and Celsius available. |
| Setting Range: 104° F to 195° F (40° C to 91° C)
Default Value: 180° F (82° C) | |

| **SETTINGS**
Change Temperature Units | |
| Fahrenheit ° F | |

Settings
Installer Menu

User Interface Display

Explanation

- Installer Menu structure includes:
 - User 'Menu' can be accessed by pressing 'Menu' key on user interface.
 - Installer 'Menu' can be accessed by first pressing and holding the 'Enter' key continue to hold and at the same time press and hold the 'Menu' key for 5 seconds. (You must press and hold the 'Enter' key first then press and hold the 'Menu' key).
 - 'Boiler Status' submenu – Monitors detail boiler status parameters such as flame signal, fan speeds and stored error codes.
 - 'Boiler Config' submenu – Modifies general boiler settings.
 - 'CH Settings' submenu – Modifies advanced Central Heating settings including outdoor reset curve parameters and boost function.
 - 'DHW Settings' – Modifies Domestic hot Water control settings such as DHW priority time.
 - 'Cascade Settings' - Refer to Multiple Boiler Manual.
 - 'System Test' – Tool aids setup of boiler installation or diagnosis of common problems.
 - 'Fan Speed' - Allows adjustment of minimum and maximum ignition speeds if the specific installation requires it.

Boiler Status

- Combustion air Blower provides airflow through Combustion and Vent systems.
- Fan speed status screen indicates actual and operational fan speeds in RPM, high, low and ignition power speed settings.
- Settings are for information only to aid in troubleshooting.

- Boiler equipped with ionization rod to detect presence of combustion using flame rectification method. When flame is present, flame ionization rod measures small DC offset current across flame to ground (i.e. burner surface).
- 'Flame' screen in 'Boiler Status' submenu displays information regarding flame ionization system; for information only and used in diagnosing combustion problems. See troubleshooting guide.
Control module logs successful and failed ignition attempts. Information accessed in ‘Ignition Attempts’ Screen as shown.

Ignition attempts are stored in non-volatile memory and are retained in event of power failure.

Figure A-1 Typical Ignition Cycle

Following control features are implemented to ensure safe and reliable operation of Combustion System:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>False Flame Detection</td>
<td>If flame is detected at end of pre-spark period (Ignit_0) than lockout will occur.</td>
</tr>
<tr>
<td>Re-ignition</td>
<td>If at end of safety period no flame detected control will go to post-purge removing unburned gas. Re-ignition attempt started following same cycle. Number of re-ignition attempts limited to 3 after which lockout occurs.</td>
</tr>
<tr>
<td>Intermittent Operation</td>
<td>Boiler can be firing continuously for 24 hours. Burner switched off and restart sequence follows.</td>
</tr>
<tr>
<td>Flame out too late</td>
<td>If flame detected after post purge lockout follows.</td>
</tr>
<tr>
<td>Safety relay test</td>
<td>In Safety ON/OFF state correct operation of safety relay is proved before ignition.</td>
</tr>
<tr>
<td>UL3563 High Limit Temperature Device</td>
<td>Boiler comes equipped with UL353 approved temperature high limit device. Gas Valve de-energized when supply temperature exceeds 203°F lockout follows.</td>
</tr>
</tbody>
</table>
User Interface Display

<table>
<thead>
<tr>
<th>Status</th>
<th>Boiler Run Time</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH 320 HR</td>
<td>Boiler stores information regarding total CH and DHW run time in hours. Data stored in non-volatile memory and retained in event of power failure.</td>
</tr>
<tr>
<td></td>
<td>DHW 145 HR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status</th>
<th>E39 # ▲</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Hrs to prev. Block Low Water Cutoff ▼</td>
<td>Boiler logs last 16 blocking errors and 16 lockout errors in non-volatile memory. Information retained in event of power failure. Most recent blocking error code and its text description displayed with elapsed time in hours since logged.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status</th>
<th>A01 # ▲</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13 Hrs to prev. Lock Ignition Error ▼</td>
<td>Optional Computer interface Kit purchased separately to view extended error code history</td>
</tr>
</tbody>
</table>

Boiler Configuration

<table>
<thead>
<tr>
<th>BOILER CONFIG Address Selection:</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Address: 0 ▼</td>
<td>‘Address Selection’ screen used to set boiler position in multiple boiler cascade installation. Refer to Multiple Boiler Installation Manual. Default setting of ‘0’ indicates boiler is operating in single boiler mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOILER CONFIG LOW WATER CUTOFF ▲</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled ▼</td>
<td>Boiler incorporates integrated Low Water Cutoff device (LWCO) that disables boiler when low water condition exists. LWCO device located at high point of internal Heat Exchanger loop to detect low water condition. Detection of low water condition will result in blocking error; Reset button LWCO must be pressed after proper water level returns to resume operation. Refer to Troubleshooting Guide. LWCO device can be disabled for diagnostic purposes or where applicable code permits.</td>
</tr>
<tr>
<td>Boiler Configuration</td>
<td>User Interface Display</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User Interface Display

<table>
<thead>
<tr>
<th>CH Settings</th>
<th>4. Central Heating (CH) modes available:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH Mode = 0 'CH with Thermostat’</td>
</tr>
<tr>
<td></td>
<td>• Boiler will attempt to satisfy CH demand while CH thermostat input is closed.</td>
</tr>
<tr>
<td></td>
<td>• Boiler will modulate its firing rate to maintain CH set point and match system heat load.</td>
</tr>
<tr>
<td></td>
<td>• CH set point adjusted in ‘Settings’ submenu under ‘User Menu’</td>
</tr>
<tr>
<td></td>
<td>CH Mode = 1 'CH with Thermostat and Outdoor Reset’</td>
</tr>
<tr>
<td></td>
<td>• Boiler will attempt to satisfy CH demand when CH thermostat input is closed.</td>
</tr>
<tr>
<td></td>
<td>• Boiler will modulate its firing rate to maintain CH set point and match system heat load.</td>
</tr>
<tr>
<td></td>
<td>• CH set point calculated as function of outdoor temperature using outdoor reset curve. See figure A-2</td>
</tr>
<tr>
<td></td>
<td>CH Mode = 2 'CH with Full Outdoor Reset’</td>
</tr>
<tr>
<td></td>
<td>• CH demand is determined by outdoor temperature and Warm Weather Shutdown temperature.</td>
</tr>
<tr>
<td></td>
<td>• Boiler will permanently attempt to satisfy CH demand, when CH demand is available.</td>
</tr>
<tr>
<td></td>
<td>• CH thermostat input is ignored.</td>
</tr>
<tr>
<td></td>
<td>• CH set point calculated as function of outdoor temperature using outdoor reset curve. See figure A-2</td>
</tr>
<tr>
<td></td>
<td>CH Mode = 3 'CH with Permanent Demand’</td>
</tr>
<tr>
<td></td>
<td>• CH demand is permanently on.</td>
</tr>
<tr>
<td></td>
<td>• Boiler will permanently attempt to satisfy CH demand.</td>
</tr>
<tr>
<td></td>
<td>• CH thermostat input is ignored.</td>
</tr>
<tr>
<td></td>
<td>• CH set point is adjusted in ‘Settings’ submenu under ‘User Menu’</td>
</tr>
</tbody>
</table>

Note:

- Once CH demand is satisfied (i.e. CH thermostat opens or boiler determines its minimum firing rate exceeds system heating load):
 - Burner shuts off, boiler enters post purge.
 - CH pump continues to run for 30 seconds.
 - Control will wait until Anti-cycle time of 180 seconds elapses before boiler fires again. Prevents short-cycling.
- The internal heat exchanger pump is energized anytime demand exists regardless of Pump Mode setting or type of demand (CH or DHW).
APPENDIX A - CONTROL MODULE

User Interface Display

<table>
<thead>
<tr>
<th>CH SETTING S</th>
<th>W a r m W e a t h e r</th>
<th>S h u t d o w n T e m p</th>
<th>70°F</th>
</tr>
</thead>
</table>

Allowed Range: 35°F to 100°F (2°C to 38°C)
Default Setting: 70°F (21°C)

CH SETTINGS | Reset Curve Design

- **Boiler:** 180°F
- **Outdoor:** 25°F

Allowed Boiler Range: 60°F to 195°F (40°C to 91°C)
Default Boiler Setting: 180°F (82°C)

CH SETTING S | R e s e t C u r v e M i l d W e a t h e r

- **Boiler:** 100°F
- **Outdoor:** 70°F

Allowed Boiler Range: 35°F to 120°F (2°C to 49°C)
Default Boiler Setting: 100°F (37°C)

CH SETTING S | R e s e t C u r v e M i l d W e a t h e r

| Boiler Min | 70°F |
| Boiler Max | 180°F |

Allowed Min. Range: 40°F to 180°F (4°C to 82°C)
Default Min. Setting: 70°F (21°C)

Allowed Max. Range: 80°F to 195°F (27°C to 91°C)
Default Max. Setting: 180°F (82°C)

Explanation

- If outdoor temperature is greater than Warm Weather Shutdown Temperature, demand for CH blocked and pumps stopped.

- Boiler capable of operating in Outdoor Reset Mode when included Outdoor Sensor is connected and proper CH Mode selected.

- If CH Mode = 1, 'Outdoor Temperature Reset with Thermostat' or 2, 'Full Outdoor Reset' boiler will adjust CH set point proportional to outdoor temperature as defined by Outdoor Reset Curve below.

- Outdoor reset curve adjusted by modifying Design and Mild Weather reference temperatures. See points A & B of Reset Curve below.

- Calculated CH set point always limited between 'Reset Curve Boiler Minimum/Maximum' temperatures. See points C & D of Reset Curve below.

Figure A-2 Outdoor Reset Curve

Calculated supply temperature follows thick black line in graph below based on outdoor temperature.

Note:
- Modes only function when outdoor temperature sensor connected.
- If 'Open' outdoor sensor detected CH set point equal to 'Boiler Reset Curve Design' temperature.
- Outdoor temperature used for CH set point calculation measured once a minute and averaged with previous measurement to compensate for rapid outdoor temperature variations.
CH Settings

<table>
<thead>
<tr>
<th>User Interface Display</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outdoor reset boost function increases CH set point by increment ('Temp') if CH demand continues beyond pre-set time limit ('Time').</td>
</tr>
<tr>
<td></td>
<td>CH set point will continue to increase until set point reaches 195°F / 91°C</td>
</tr>
<tr>
<td></td>
<td>Allowable Temperature Increment: 0..36 °F (0..20 °C)</td>
</tr>
<tr>
<td></td>
<td>Default Temperature increment: 0 °F (10 °C)</td>
</tr>
<tr>
<td></td>
<td>Allowable Time Delay: 1..120 minutes</td>
</tr>
<tr>
<td></td>
<td>Default Time Delay: 20 minutes</td>
</tr>
</tbody>
</table>

![CH SETTINGS](image)	Maximum boiler power in CH mode limited by adjusting 'Maximum Power CH' setting. Boiler will not exceed this value while operating in CH Mode.
	Allowable Range: 1..100%
	Default Setting: 100%

DHW Settings

<table>
<thead>
<tr>
<th>User Interface Display</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| ![DHW SETTINGS](image) | Two DHW modes are available
 • **DHW Mode = 0 'No DHW'**
 • DHW Mode is disabled
 • The DHW thermostat input is ignored and the DHW pump is not used.
 • **DHW Mode = 2 'DHW Store with Thermostat'**
 • Boiler reacts to DHW demand when DHW thermostat input closes.
 • Boiler modulates to meet DHW demand similar to CH Mode except DHW set point is used. DHW set point set in Settings’ submenu found in ‘User Menu’.
 • Simultaneous CH & DHW demands handled using DHW Priority Timing. See ‘DHW Maximum Priority Time’ setting below.

| Note:
• Outdoor reset function disabled while operating in DHW Mode.
• Typical when using a DHW indirect storage tank.
• After DHW demand satisfied, boiler enters post purge mode and DHW pump continues to run for 15 seconds.

APPENDIX A - CONTROL MODULE

<table>
<thead>
<tr>
<th>User Interface Display</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHW Settings</td>
<td>Maximum time boiler operates in DHW mode limited by DHW Maximum Priority Time Setting. Priority timer starts when both CH and DHW demand is present. Boiler will switch from DHW back to CH operation after Maximum Priority Time has elapsed. CH demand then has priority until Maximum Priority Time has elapsed. Process repeats until either CH or DHW demand satisfied.</td>
</tr>
<tr>
<td></td>
<td>Allowed Range: 1 to 60 Minutes Default Setting: 30 Minutes</td>
</tr>
<tr>
<td>System Test</td>
<td>System test can be activated via installer menu for testing system at fixed power rates. Boiler can be started without CH or DHW demand being present. System Test has priority over any system demand while test mode activated. System test mode automatically ends after 30 minutes boiler resumes normal operation. The following modes are available:</td>
</tr>
<tr>
<td></td>
<td>• Disabled</td>
</tr>
<tr>
<td></td>
<td>• Low power - Burner starts. After ignition period has finished the burner stays at low power</td>
</tr>
<tr>
<td></td>
<td>• Ignition power - Burner starts. Stays at ignition power</td>
</tr>
<tr>
<td></td>
<td>• High power - Burner starts. After ignition period has finished burner stays at high power. Note:</td>
</tr>
<tr>
<td></td>
<td>• Before running system test modes, check if hydronic system capable of dissipating heat.</td>
</tr>
<tr>
<td></td>
<td>• Both heat exchanger and CH pumps are activated during system test.</td>
</tr>
<tr>
<td></td>
<td>• During System Test Mode, boiler will run at fixed power rates until supply water temperature is 93°C/195°F</td>
</tr>
<tr>
<td></td>
<td>• All other safety functions remain active while in System Test Mode.</td>
</tr>
</tbody>
</table>
399 MBH - PRIMARY LOOP EQUIVALENT LENGTH CALCULATION & PUMP SELECTION

For 399MBH Boiler

(This boiler must be piped with a primary loop)

These charts are valid for piping diagrams on pages 14 & 18

Instructions:

1. Pipe diameter determines pump size. Smaller the diameter of pipe, larger the pump. 399 Mbh boiler can be piped in 1¼" pipe. Use charts 1-2 to determine pipe size and respective pump size.
2. Fill in chart using the 1¼" section first. Then consult chart 3 for pump selection.
3. Pump size may be decreased by decreasing equivalent length of pipe. Use larger diameter pipe as primary loop to decrease equivalent length. Use charts 2 or 3.

Note: The Figure below are based on industry average. Consult valve/fitting manufacturer for exact equivalent length or for fittings not shown below.

<table>
<thead>
<tr>
<th>Chart 1</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Diameter</td>
<td>Fitting</td>
<td>Enter Number of Fittings</td>
<td>Multiply By</td>
</tr>
<tr>
<td>1¼" (Any pipe/fitting larger than 1¼", count as 1¼")</td>
<td>90° Elbow</td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>45° Elbow</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Tee-branch</td>
<td></td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>Tee-through</td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Swing check valve</td>
<td></td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>Lift check valve</td>
<td></td>
<td>62.5</td>
</tr>
</tbody>
</table>

Enter Total 1¼" straight pipe length in feet

Add up numbers in column C

Pump Factor

Total equivalent length of Primary
Chart 2

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Fitting</th>
<th>Enter Number of Fittings</th>
<th>Multiply By</th>
<th>Equivalent Length A x B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½"</td>
<td>90° Elbow</td>
<td></td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45° Elbow</td>
<td></td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tee-branch</td>
<td></td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tee-through</td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swing check valve</td>
<td></td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lift check valve</td>
<td></td>
<td>75.0</td>
<td></td>
</tr>
</tbody>
</table>

Enter Total 1½" straight pipe length in feet

Add up numbers in column C

Total equivalent length of Primary

Multiply Total of Column C in Chart 3 by 0.4

Chart 3

<table>
<thead>
<tr>
<th>1¼" Pipe Eq. Ft.</th>
<th>System ΔT</th>
<th>Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤25</td>
<td>20-25</td>
<td>Grundfos UPS 40-60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taco 1634</td>
</tr>
<tr>
<td></td>
<td>25-30</td>
<td>Grundfos UPS 26-150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taco 2400-50</td>
</tr>
<tr>
<td></td>
<td>30-50</td>
<td>Grundfos UPS 26-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taco 0013</td>
</tr>
<tr>
<td></td>
<td>50-60</td>
<td>Grundfos UPS 15-58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taco 0010</td>
</tr>
<tr>
<td>Company Address & Phone #</td>
<td>Company Name & Tech Initials</td>
<td>Service Performed</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>