<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Assembled Boiler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Relief Valve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Pressure Gauge</td>
<td></td>
<td>Includes essential documents</td>
</tr>
<tr>
<td>Drain Valve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Shutoff Valve</td>
<td>Used for measuring outside temperature</td>
<td></td>
</tr>
<tr>
<td>Outdoor Sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document Package</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manifold</td>
<td>(See page 13 5.9 for install instructions)</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Important Information</td>
<td>5</td>
</tr>
<tr>
<td>2 - Introduction</td>
<td>6</td>
</tr>
<tr>
<td>3 - Component Listing</td>
<td>7</td>
</tr>
<tr>
<td>4 - Locating Boiler</td>
<td>8</td>
</tr>
<tr>
<td>5 - Hydronic Piping</td>
<td>10</td>
</tr>
<tr>
<td>6 - Combustion Air And Vent Piping</td>
<td>20</td>
</tr>
<tr>
<td>7 - Gas Supply Piping</td>
<td>40</td>
</tr>
<tr>
<td>8 - Electrical Connections</td>
<td>42</td>
</tr>
<tr>
<td>9 - Start Up Procedure</td>
<td>50</td>
</tr>
<tr>
<td>10 - Operating Instructions</td>
<td>64</td>
</tr>
<tr>
<td>11 - General Maintenance And Cleaning</td>
<td>65</td>
</tr>
<tr>
<td>12 - Ratings And Capacities</td>
<td>69</td>
</tr>
<tr>
<td>13 - Trouble Shooting</td>
<td>70</td>
</tr>
<tr>
<td>14 - Glossary</td>
<td>88</td>
</tr>
</tbody>
</table>
Table 1: Physical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>380</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (A)</td>
<td>23-⅝" (600mm)</td>
</tr>
<tr>
<td>Height (B)</td>
<td>50" (1.27m)</td>
</tr>
<tr>
<td>Depth (C)</td>
<td>25-½" (648mm)</td>
</tr>
<tr>
<td>Bottom Cabinet (D)</td>
<td>Access from Back or Sides of Jacket 11-⅜" (298.5mm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Connections</th>
<th>Size</th>
<th>1-½ (38.1mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location (G)</td>
<td>3-¾" (95.3mm)</td>
<td></td>
</tr>
<tr>
<td>Location (H) Return</td>
<td>11-⅜" (298.5mm)</td>
<td></td>
</tr>
<tr>
<td>Location (I) Supply</td>
<td>7-⅞" (196.9mm)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas Connection</th>
<th>Location (L)</th>
<th>7-⅞" (196.9mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>1" NPT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condensate Drain Connection (J)</th>
<th>Location (J)</th>
<th>8-⅞" (196.9mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>3/4" NPT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight</th>
<th>Shipping</th>
<th>255 LBS (115.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>225 LBS (102.1kg)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vent Connector - Concentric</th>
<th>110/160 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Cord Length</td>
<td>5 ft. (1.5m)</td>
</tr>
</tbody>
</table>

50 psi safety relief valve (3.44 bar)
Pressure relief valve connection 3/4" (22.2m)
1. Safety Information

Boiler installation shall be completed by qualified agency. See glossary for additional information.

⚠️ WARNING

Fire, explosion, asphyxiation and electrical shock hazard. Improper installation could result in death or serious injury. Read this manual and understand all requirements before beginning installation.

Become familiar with symbols identifying potential hazards.

This is the safety alert symbol. Symbol alerts you to potential personal injury hazards. Obey all safety messages following this symbol to avoid possible injury or death.

⚠️ DANGER

Indicates a hazardous situation which, if not avoided, WILL result in death or serious injury.

⚠️ WARNING

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

⚠️ CAUTION

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

Note

Used to address practices not related to personal injury.
2 - INTRODUCTION

2.1 Installation shall conform to requirements of authority having jurisdiction or in absence of such requirements:

- **United States**
 - National Electrical Code, NFPA 70.

- **Canada**
 - Natural Gas and Propane Installation Code, CAN/CSA B149.1.
 - Canadian Electrical Code, Part I, Safety Standard for Electrical Installations, CSA C22.1

2.2 Where required by authority having jurisdiction, installation shall conform to Standard for Controls and Safety Devices for Automatically Fired Boilers, ANSI/ASME CSD-1. Additional manual reset low water cutoff may be required.

2.3 Requirements for Commonwealth of Massachusetts:
Boiler installation must conform to Commonwealth of Massachusetts code 248 CMR which includes but is not limited to:
- Installation by licensed plumber or gas fitter.

2.4 Manufacturer recommends use of Carbon Monoxide monitor may be requirement of local jurisdiction.

2.5 Designated Use
- Hot water heating boiler.
- Indoor installation.
- Closet or alcove installation.
- Direct vent boiler or single vent pipe.
- For use with natural gas or liquefied petroleum gases (LP/propane).

2.6 The unit MUST NOT:
- Directly heat potable water. Indirect heating is acceptable.
- Heat water with non-hydronic heating system chemicals present (example, swimming pool water).
- Exceed 50 psig (3.44 bar) maximum allowable working pressure, or drop below minimum system pressure 7.25 psig (.50 bar)
- Exceed 176°F (80°C) system design temperature.

2.7 Operational Features
- Modulating: 15-100% Input Rate.
- Integral Dual Limit.
- Integral Low Water Pressure Cutoff.
- Outdoor Temperature Reset.
- Heat exchanger over heat protection.
- Recommended system pressure (cold) 21.7 psig (1.5 bar)

2.8 CSD-1 Compliance
Consult authority having jurisdiction pripr to installation.
Field source:
- Manual reset low water cutoff. see Section 5-4.

Check our website frequently for updates: www.ecrinternational.com

Information and specifications outlined in this manual in effect at the time of printing of this manual. ECR International reserves the right to discontinue, change specifications or system design at any time without notice and without incurring any obligation, whatsoever.
3 - COMPONENT LISTING

DMG-380

1. Condensate trap
2. Gas Valve
3. Fan
4. Air/gas mixer
5. Heat exchanger
6. Burner sight glass
8. Flue sensor
9. Coaxial flue connector
10. Exhaust test port
11. Intake test port
12. Exchanger flange high limit (#4 on wire diagram)
13. Ignition/Flame detection electrode
14. Spark generator
15. Automatic air vent
16. Auxiliary control board box
17. Air/gas venturi
18. Pump
19. Boiler drain
21. Low water pressure switch
22. Thermal fuse (#6 on wire diagram)
A. Condensate trap drain
B. Gas inlet connection
C. Heating supply connection
D. Heating return connection
4.1 Boiler Location Considerations

- Ambient room temperature always above 32°F (0°C) to prevent freezing of liquid condensate.
- Approved for installation in closets or alcove provided it is correctly designed for that purpose.
- Not approved for outdoor installation.
- Protect gas ignition system components from water (dripping, spraying, rain, etc.) during operation and service (circulator replacement, condensate trap, control replacement, etc.).
- Access to outdoors to meet minimum and maximum pipe lengths for combustion air and vent piping. See section 6.
- Disposal of condensate. See section 6.
- Drainage of water (or water-antifreeze solution) during boiler service or from safety relief valve discharge. See section 5.
- Access to system water piping, gas supply, and electrical service. See sections 5, 7 and 8.
- Clearances to combustible materials and service clearances. See Table 2 and figures 4-1a - 4-2c.
- Boiler shall be installed on flat surface capable of supporting the weight of the boiler.
- Do not install on carpet.
- Boiler may be installed in any room or internal space, special attention shall be given to the requirements of the current electrical provisions with respect to the installation of the boiler in a room or internal space containing a bath or shower. Where a room-sealed boiler is installed in a room containing a bath or shower, it must not be possible for a person using the bath or shower to touch any electrical switch or boiler control utilizing line voltage electricity.
- Multiple Boilers can be placed side by side, or back to back.

WARNING

Fire Hazard! Do not install on carpeting. Failure to follow these instructions could result in death or serious injury.

Note

Use two (2) wrenches when tightening and fitting to pipe boiler’s threaded fittings. Boiler’s internal piping can be damaged if subjected to excessive torque.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Combustible Materials (1)</th>
<th>Service (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>DMG - 380</td>
<td></td>
</tr>
<tr>
<td>Top (A)</td>
<td>0” (0 cm)</td>
<td>15-3/4” (400 mm)</td>
</tr>
<tr>
<td>Left Side (B)</td>
<td>1-3/4” (45 mm)</td>
<td>1-3/4” (45 mm)</td>
</tr>
<tr>
<td>Right Side (C)</td>
<td>1-3/4” (45 mm)</td>
<td>1-3/4” (45 mm)</td>
</tr>
<tr>
<td>Front (D)</td>
<td>2” (4.5 cm)</td>
<td>23-5/8” (600 mm)</td>
</tr>
<tr>
<td>Back (E)</td>
<td>0” (0 cm)</td>
<td>0” (0 cm)</td>
</tr>
<tr>
<td>Bottom (F)</td>
<td>0” (0 cm)</td>
<td>0” (0 cm)</td>
</tr>
<tr>
<td>Combustion Air/Vent piping</td>
<td>0” (0 cm)</td>
<td>6” (16 cm)</td>
</tr>
</tbody>
</table>

(1) Required distances measured from boiler jacket.
(2) Service, proper operation clearance recommendation.
* Allowance for piping at the bottom of boiler not included.
4 - LOCATING BOILER

FIGURE 4-1a Clearance to Combustible Materials

Boiler Front View

FIGURE 4-2a Service Clearances - Boiler Front

FIGURE 4-1b Clearance to Combustible Materials

Boiler Left Side View

FIGURE 4-2b Service Clearances - Boiler Left side

FIGURE 4-2c Service Clearances - Closet Installation

CLEARANCES REQUIRED FOR CLOSET INSTALLATION

0 in / 0 mm between the Back of the Unit and the wall
5 - HYDROIC PIPING

5.1 General

• Primary/Secondary piping required.
• Install piping in accordance with authority having jurisdiction.
• Support system piping and safety relief valve discharge piping. Boiler’s internal piping and wall mount bracket can be damaged if subjected to excessive weight.
• Size central heating pump (and domestic hot water pump, if used) for system requirements only. Internal heat exchanger pump compensates for pressure drop through boiler internal piping and heat exchanger.
• Thoroughly clean and flush system before connecting to boiler.
• If oil is present in system water, use approved detergent to wash system.
• It is necessary to semi-annually check the water quality of central heating systems.
• Flush system to remove any solid objects such as metal chips, fibers, or Teflon tape, etc.
• Use purge valve to flush zoned systems, each zone separately. If purge valves and isolation valves are not installed, install them to properly clean the system.
• When purging installations that include standing iron radiators and systems with manual vents at high points, start with nearest manual air vent. Open the vent until water flows out, then close vent. Repeat this procedure, working toward furthest air vent.
• Install a basket strainer if large amounts of sediment is present. Keep basket clear of sediment build up.
• Use only inhibited propylene glycol solutions certified by fluid manufacturer as acceptable for use with closed water heating system.
• Do not fill boiler or boiler system with softened water.
• Thoroughly clean and flush any system that used glycol before installing new Boiler.
• Provide user with Material Safety Data Sheet (MSDS) on fluid used.

WARNING

• Poison hazard. Ethylene glycol is toxic. Do not use ethylene glycol.
• Never use automotive or standard glycol antifreeze, even ethylene glycol made for hydronic systems.
• Ethylene glycol can attack gaskets and seals used in hydronic systems.
• Do not use petroleum based cleaning or sealing compounds boiler system.
• Do not fill boiler or boiler system with softened water.
• Thoroughly clean and flush any system that used glycol before installing new Boiler.

5.2 Special Conditions

Do not expose boiler and condensate piping to freezing temperatures.

• System piping exposed to freezing conditions: Use inhibited propylene glycol solutions certified by fluid manufacturer for use with closed water heating system. Do not use automotive or ethylene glycol.
• Boiler installed above radiation level (or as required by authority having jurisdiction). Integral low water pressure switch is provided in boiler.
• Boiler used in connection with refrigeration system. Install piping in parallel with boiler, with appropriate valves to prevent chilled medium from entering boiler.
• System piping connected to heating coils located in air handling unit exposed to refrigerated air circulation. Install flow control valves or other automatic means to prevent gravity circulation of boiler water during cooling cycle.
5 - HYDRONIC PIPING

5.3 Safety Relief Valve and Air Vent

- Install safety relief valve using field supplied pipe fittings. See figure 5-1
- Install safety relief valve with spindle in vertical position.
- Do not install shutoff valve between boiler and safety relief valve.
- Install discharge piping from safety relief valve.
- Use ¾" or larger pipe.
- Use pipe suitable for temperatures of 375°F (191°C) or greater.
- Individual boiler discharge piping shall be independent of other discharge piping.
- Size and arrange discharge piping to avoid reducing safety relief valve relieving capacity below minimum relief valve capacity stated on rating plate.
- Run pipe as short and straight as possible to location protecting user from scalding and properly drain piping.
- Install union, if used, close to safety relief valve outlet.
- Install elbow(s), if used, close to safety relief valve outlet and downstream of union (if used).
- Terminate pipe with plain end (not threaded).

5.4 Low Water Cutoff

- Boiler is equipped with Low Water Pressure Switch.
- Low Water Cutoff (LWCO) probe location. See figure 5-2 for minimum probe height. Do not install shutoff valve between boiler and LWCO probe.
- If using separate stand pipe, install air vent using tee to avoid nuisance shutdowns.
- Arrange piping to prevent water dripping onto boiler.
- Connect probe signal wires to shutdown terminal (BL) on control board.
5.5 Trim Piping

- Temperature - Pressure Gauge. Install temperature pressure gauge using field supplied piping. See figure 5-3. Install as close to boiler supply fitting as practical and visible.

- Boiler has integral drain valve located inside jacket directly underneath pump. Install provided external drain valve.

5.6 System Piping

- See Table 4 for basic system piping configurations.

- Systems with automatic fill valves require back flow prevention device.

- Single boiler system. See figures 5-4, 5-5 for general guidance. Additional considerations:
 - Boiler control is designed for single central heating pump. Installer responsible for integration of multiple central heating pumps.
 - Boiler control allows domestic hot water prioritization. Function could be lost if central heating pump not directly connected to control system.

- Multiple boiler system. See figures 5-6, 5-7 for general guidance. Additional considerations:
 - Control system requires equivalent water temperatures entering each boiler to properly sequence and adjust system supply temperature.

![FIGURE 5-3 Temperature Pressure Gauge and Safety Relief Valve Installation - Viewed from Back of Boiler](image)

WARNING

Burn and scald hazard. Verify all plastic caps are removed from boiler connections. Failure to follow these instructions could result in death or serious injury.

- Thoroughly flush all hydronic piping.
- Secure all valves/fittings to boiler.
- Ensure washers supplied are utilized.
- Face valves and fittings to rear wall.
- Fit union bends to valves.
 - If soldering to boiler union bends, ensure bends are not connected to the valves, otherwise internal seals may be damaged.
 - Verify 3/4" [22.2 mm] isolating valve with filter is fitted to heating return connection.
 - Fit pressure relief valve connection vertically before heating isolating valve.
- Connect system valve pipe work to the boiler.
WARNING

Burn and scald hazard. Safety relief valve could discharge steam or hot water during operation. Install discharge piping per these instructions.

- Route pressure relief valve discharge piping to the floor. Follow local code with respect to necessary distance to the floor. See Figure 5-3.
- Verify all valves are closed.
- Connect supplied condensate trap to a drain. Verify there is continuous slope towards the drain, avoid level horizontal sections of tubing.

5.7 Heating System And Refrigeration

Boiler when used in connection with refrigeration system, must be installed so chilled medium is piped in parallel with the boiler with appropriate valves to prevent chilled medium from entering the boiler.

Boiler piping system of hot water boiler connected to heating coils located in air handling units where they may be exposed to refrigerated air circulation must be equipped with flow control valves or other automatic means to prevent gravity circulation of the boiler water during the cooling cycle.

5.8 Available Pump Head for Central Heating

Design heating system to ensure minimum water flow rate of at least 7.8 gpm (3250 L/H).

This high static head pump is fit for installation on any type of single or double-pipe heating systems. Automatic air valve incorporated in pump allows for quick air purging of heating system.

5.9 Manifold Installation (supplied) See Figure 5-3

1. Boiler is supplied with union connection installed on boiler piping for connection to manifold.
2. Configure manifold to suit the application.

Note Identify BOILER supply and return when installing manifold.

3. Apply sealant and tighten manifold in place. Check for leaks.
Illustrations are meant to show system piping concept only. Installer responsible for all equipment and detailing required by authority having jurisdiction.

Table 4 - System Piping Configurations

<table>
<thead>
<tr>
<th>Single Boiler/Multiple Boilers</th>
<th>Primary/Secondary Pumping</th>
<th>Zone Valves</th>
<th>Zone Pumps</th>
<th>Illustrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Figure 5-4 / 5-6 / 5-8</td>
<td>Figure 5-5 / 5-7</td>
<td></td>
</tr>
</tbody>
</table>

Piping Legend

- Balancing valve
- Zone valve
- Ball valve
- Air separator
- Circulator
- Hose bib
- Combination fill valve
- Flow-check valve
- Float type air vent
- Boiler
- Boiler heat exchanger
- Indirect DHW tank
- Diaphram-type expansion tank
FIGURE 5-4 - Primary/Secondary, Zoned, WITH ZONE VALVES, (Optional) Indirect Tank

* Manufacturer requires all domestic hot water (DHW) installations use an anti-scald valve. Local codes may require additional equipment (expansion tank, relief valves, etc.) Select and size equipment to suit installation and meet code requirements.

* Hot Water Supply Tempered

12" (305mm) Maximum Separation

Use external pump relay or Argo Zone Control to interface system pump to boiler.
5 - HYDRONIC PIPING

FIGURE 5-5 - Primary/Secondary, Zoned, WITH ZONE PUMPS, (Optional) Indirect Tank

* Manufacturer requires all domestic hot water (DHW) installations use an anti-scald valve. Local codes may require additional equipment (expansion tank, relief valves, etc.) Select and size equipment to suit installation and meet code requirements.

* Hot Water Supply Tempered

Note: 12" (305mm) Maximum Separation

Use external pump relay or Argo Zone Control to interface system pump to boiler.
5 - HYDRONIC PIPING

FIGURE 5-6 - Multiple Boilers with Common Primary Secondary, Zone Valves and (Optional) Indirect

Manufacturer requires all domestic hot water (DHW) installations use an anti-scald valve. Local codes may require additional equipment (expansion tank, relief valves, etc.) Select and size equipment to suit installation and meet code requirements.

12" (305mm) Maximum Separation

Use external pump relay or Argo Zone Control to interface system pump to boiler.

<table>
<thead>
<tr>
<th># Boilers on Pipe Branch</th>
<th>Pipe Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2½</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

UP TO 6 BOILERS
Note: Manufacturer requires all domestic hot water (DHW) installations use an anti-scald valve. Local codes may require additional equipment (expansion tank, relief valves, etc.) Select and size equipment to suit installation and meet code requirements.

Note: 12" (305mm) Maximum Separation

Note: Use external pump relay or Argo Zone Control to interface system pump to boiler.

UP TO 6 BOILERS

* Temperled Hot Water Supply

**Tempered Hot Water Supply

FIGURE 5-7 - Multiple Boilers with Common Primary Secondary, Zone Pumps and (Optional) Indirect

<table>
<thead>
<tr>
<th># Boilers on Pipe Branch</th>
<th>Pipe Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2½</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Make-up Water Supply

CH/System Pump

Optional Indirect DHW Tank

ASME Relief Valve

System Temperature Sensor

CH/System Pump

Optional Indirect DHW Tank

ASME Relief Valve

Make-up Water Supply

ASME Relief Valve

System Temperature Sensor

CH/System Pump

Optional Indirect DHW Tank

ASME Relief Valve

System Temperature Sensor
FIGURE 5-8 - Multiple Boilers with Individual Primary Secondary, Zone Valves and (Optional) Indirect

Manufacturer requires all domestic hot water (DHW) installations use an anti-scald valve. Local codes may require additional equipment (expansion tank, relief valves, etc.) Select and size equipment to suit installation and meet code requirements.

SYSTEM PUMP 2 is required if System Pump 1 capacity is less than total boiler capacity.

Note

- Use external pump relay or Argo Zone Control to interface system pump to boiler.

Table: # Boilers on Pipe Branch vs Pipe Size

<table>
<thead>
<tr>
<th># Boilers on Pipe Branch</th>
<th>Pipe Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2½</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Note

- 12" (305mm) Maximum Separation
6.1 General

- Installations shall comply with Authority having jurisdiction and in absence of such with:
 » U.S. ANSI Z223.1 / NFPA 54 in the United States
 » CSA B149.1 in Canada.
- This boiler requires a dedicated direct vent system or may be category IV Indoor air.
- Vent connections serving appliances vented by natural draft shall not be connected into any portion of mechanical draft systems operating under positive pressure.
- Materials used in the U.S. shall comply with Authority having jurisdiction and in absence of such with: ANSI/ASTM D1785, ANSI/ASTM F441, ANSI/ASTF493, UL1738 or UL636.
- Canadian installations only: All venting material, primer and glue must be listed to ULC S636.
- Canadian installations only: First 3 ft. (0.9m) of plastic vent pipe from vent connector must be readily accessible for visual inspection.
- Support piping in accordance with pipe manufacturer’s instruction and authority having jurisdiction. In absence of manufacturer’s instruction use pipe hooks, pipe straps, brackets, or hangers of adequate and strength located at intervals of 4 ft (1.2m) or less. Allow for expansion/contraction of pipe.

6.2 Removal of Existing Boiler From Common Vent System

When existing boiler is removed from common venting system, common venting system is likely to be too large for proper venting of appliances remaining connected to it. After removal of existing boiler, following steps shall be followed with each appliance remaining connected to common venting system placed in operation, while other appliances remaining connected to common venting system are not in operation:

- Seal any unused openings in common venting system.
- Visually inspect venting system for proper size and horizontal pitch. Determine there is no blockage or restrictions, leakage, corrosion and other deficiencies which could cause an unsafe condition.
- When practical, close all building doors, windows, and all doors between space in which appliances remaining connected to common venting system are located and other spaces of building. Turn on clothes dryer and any appliance not connected to common venting system. Turn on exhaust fans, such as range hoods and bathroom exhaust so they will operate at maximum speed. Do not operate summer exhaust fan. Close fireplace dampers.
- Turn on appliance being inspected. Follow lighting instructions. Adjust thermostat so appliances will operate continuously.
- Test for spillage at draft hood relief opening after 5 minutes of main burner operation. Use flame of match or candle, smoke from cigarette, cigar or pipe.
- Determine each appliance remaining connected to common venting system properly vents when tested as outlined above. Then return doors, windows, exhaust fans and any other gas-burning appliance to their previous condition of use.
- Any improper operation of common venting system should be corrected so installation conforms with National Fuel Code, ANSI Z223.1/NFPA 54 and/or Natural Gas and Propane Installation Code, CAN/CSA B149.1. When re-sizing any portion of common venting system, common venting system should be re-sized to approach minimum size as determined using appropriate tables in Chapter 13 of the National Fuel Gas Code, ANSI Z223.1/NFPA 54 and/or Natural Gas and Propane Installation Code, CAN/CSA B149.1.

Warning:

- Cascade venting of condensing boilers shall be vented with manufacturer's polypropylene venting material. Failure to follow these instructions could result in death or serious injury.

Warning:

- ABS/PVC venting shall not be used this product. Use of DWV plumbing pipes to vent this boiler shall be prohibited.
- Use of cellular core PVC (ASTM F891), cellular core CPVC, or Radel® (polyphenolsulfone) in venting systems shall be prohibited.
- Covering non-metallic vent pipe and fittings with thermal insulation shall be prohibited.
- Failure to follow these instructions could result in death or serious injury.

Note:

- Follow venting manufacturer’s equivalent lengths for speciality fittings.
WARNING

Manufacturer recommends this condensing boiler be vented with approved polypropylene venting material. Use only materials listed below for vent pipe, intake air pipe, and fittings. Failure to comply could result in death or serious injury.

WARNING

Cascade venting of condensing boilers shall be vented with manufacturer's polypropylene venting material. Failure to follow these instructions could result in death or serious injury.

WARNING

ABS/PVC venting shall not to be used this product. Use of DWV plumbing pipes to vent this boiler shall be prohibited.

Use of cellular core PVC (ASTM F891), cellular core CPVC, or Radel® (polypHENolsulfone) in venting systems shall be prohibited.

Covering non-metallic vent pipe and fittings with thermal insulation shall be prohibited.

Failure to follow these instructions could result in death or serious injury.

6.3 Approved Venting Materials

Installation shall conform to requirements of authority having jurisdiction or in absence of such requirements:

- **Canada** - Natural Gas and Propane Installation Code, CAN/CSA B149.1

Note

Follow venting manufacturer's equivalent lengths for specialty fittings.

B. Approved Polypropylene Manufacturers:

Must comply with UL 1738 or ULC S636. The following manufacturers have been evaluated:

- Natalini
- Duravent
- Centrotherm
- Z Flex

C. Vent Termination

- Terminate combustion air and vent pipes with fittings or concentric vent kit.
 - Use horizontal pipe for vent and 90° elbow for combustion air termination when using fittings.
 - Separate vent terminal from air inlet terminal to prevent flue gas recirculation. If T-Terminal is used on flue pipe at sidewall, air inlet terminal shall be at least 36° or more away from vent terminal.
 - Locate combustion air termination as far as possible from swimming pool, swimming pool pump house, and other sources of airborne chlorine.

A. Vent Material Options:

1. **110 / 160 mm Polypropylene concentric** (4 inch / 6 inch) or
2. **110 mm polypropylene twin pipe** (MUST be polypropylene on BOTH intake and exhaust) (4 inch) or
3. **4” Twin pipe CPVC** (PVC optional on intake ONLY).
6.4 Concentric Venting Instructions

A. General

- Examine all components for possible shipping damage, prior to installation.
- Venting system must be free to expand and contract.
- Support venting system in accordance with these instructions.
- Vent system must have unrestricted movement through walls, ceilings and roof penetrations.
- Check for proper joint construction when joining pipe to fittings.
- If vent is penetrating ceilings and floors, openings must have means of firestopping in joist areas and proper firestop spacer assemblies installed.
- Standard roof flashing methods must be employed to install roof flashing.
- Wall and roof openings must be framed to provide support attachment of termination assemblies.
- Slope vent pipes minimum 3/4" (2 cm/m) for every 3 ½ ft (1.0 m) back toward boiler. Support horizontal sections to prevent sags capable of accumulating condensate.
- For horizontal flues a minor deviation from the horizontal is allowable, provided it results in a downward slope towards the boiler. For the vertical flue termination, refer to the separate installation instructions supplied with the assembly.
- Use of additional flue components as follows:

<table>
<thead>
<tr>
<th>Elbow</th>
<th>Total Length Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°</td>
<td>1' 8" (0.5 m)</td>
</tr>
<tr>
<td>90°</td>
<td>3' 4" (1.0 m)</td>
</tr>
</tbody>
</table>

Total flue length shall not exceed 21 ft (6.4 m) to include allowance for elbows.

- Connect flue elbow to top of boiler and adjust direction of elbow to desired orientation (rear, right or left).
- Measure distance from outside wall face to elbow. This dimension will be known as ‘X’. Add distance “Y” + 2" (50 mm) to “X” this is the total dimension of the vents.

WARNING

- Covering non-metallic vent pipe and fittings with thermal insulation shall be prohibited.
- Use of cellular core PVC for venting flue gas could result in death, or serious injury.
- Concentric venting shall be fastened with screws. Dual flue venting is NOT fastened with screws.

- Locate combustion air and vent terminals as required by authority having jurisdiction.
• Mark dimension from above on outer aluminum intake vent. Measure length of waste material, and transfer dimension to inner grey flue pipe.

• Remove waste from both vents (flue and air). Verify cut ends are square and free from burrs. Insert flue back into intake air vent and pass them through hole in wall.

• Check all measurements before cutting. Clearance to combustible materials is zero when using concentric vent system.

• After installing venting use calibrated analyzer to verify there is no recirculation of combustion.

• Ensure minimum downward slope of 2 in (50mm) for every 3 ft (1.0m) of flue length toward the boiler.

• Ensure termination is positioned with slots at the bottom.

B. Concentric Vent Support

• All venting must be supported every 4 ft (1.3 m) using steel strapping or equivalent. See Figure 6.4.

C. Flue Options

• Standard horizontal termination is suitable only for horizontal applications.

• Maximum permissible equivalent flue lengths are:
 - Concentric venting = 21 ft (6.4m)

• Any "in line" elbows in flue system must be taken into consideration.

<table>
<thead>
<tr>
<th>Elbow</th>
<th>Total Length Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°</td>
<td>1' 8" (0.5 m)</td>
</tr>
<tr>
<td>90°</td>
<td>3' 4" (1.0 m)</td>
</tr>
</tbody>
</table>

The first elbow in horizontal run is NOT included in any equivalent length calculations.
D. Concentric Vent Screw Placement - See Figure 6.7

Fasten two screws through outer intake pipe behind the gaskets at equal distances approx. 180º apart.

Note - screws used must be no larger than No. 8 - 1/2" sheet metal screws and must be zinc coated. Length of this screw must be no larger than 1 3/4" (45mm) into gasketed end of the other pipe.
must be 0.75 in (19.00 mm).
When connecting vent pipes use only a small amount of silicone grease supplied with the exhaust pipes. Do not use other types of grease.

6.5 Two Pipe Polypropylene System
Two pipe venting allows for exhaust flue and intake flue to be separated from each other. Fresh air may be drawn in at a different area from where the flue terminal is located.
Splitting kit consists of adaptor and of intake air vent adaptor. See Figure 6-8.
Use screws and seals removed from the cap for the air duct adaptor.
90° elbow allows boiler to connect to the venting termination regardless of direction since it can be rotated 360°. It can also be used to connect the vent with 45° elbow.

<table>
<thead>
<tr>
<th>Elbow</th>
<th>Total Length Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°</td>
<td>10" (0.3 m)</td>
</tr>
<tr>
<td>90°</td>
<td>2 ft (0.6 m)</td>
</tr>
</tbody>
</table>

Note
Ensure minimum downward slope of 2 in (50 mm) for every 4 ft (1 m) of duct length toward boiler.

Note
If using indoor air for combustion do not exceed 100 ft (30 m) exhaust vent pipe.

FIGURE 6-8 - Two Pipe Polypropylene System Adapter

FIGURE 6-9 - Separated Horizontal Flue Termination

FIGURE 6-10 - Separated Flue Termination
(Natalini Venting Only)
A. Separated Horizontal Flue Termination Installation Options: See Figure 6-9

Maximum length of intake vent (L1) shall not exceed 49 ft (15.00 m) -

\[(L1 + L2) \text{ max} = 100 \text{ ft (30 m)}\]

B. Spring Clamp Instructions - See Figure 6-11

Manufacturer recommends use of a spring clamp at every push-fit gasket connection when using a polypropylene vent. Follow vent manufacturer instructions or, if unavailable, below when installing spring clamps:

- Take dual flue spring clamp with larger hole in it and place it onto male end of pipe.
- Slide clamp all the way down the pipe with smaller opening of clamp towards female end of the pipe.
- Bend clamp over the female end of pipe "A" and slide male end of pipe "B" through clamp and into female end of pipe "A".

Note

This clamp is necessary for the dual flue pipe. Dual flue spring clamp is for indoor use only and should not be used in outdoor applications.

C. Two Pipe Vent Support - See Figure 6-12

All venting must be supported every 4' (1m) using steel strapping or equivalent.

Slope vent towards boiler approximately 3/4" (2 cm) for every 3' (1.0 m)

Equivalent Length of Dual Flue Elbows :
6.6 Venting Configurations
Various venting configurations can be applied to this boiler. For guidance see Venting Configuration Table 5A and corresponding figures.

Table 5A - Combustion Air - Venting Locations

<table>
<thead>
<tr>
<th>Flue Gas Location</th>
<th>Combustion Air Location</th>
<th>Flue Gas Terminals</th>
<th>Corresponding Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>Roof</td>
<td>Two Pipe</td>
<td>Figure 6-14</td>
</tr>
<tr>
<td></td>
<td>Side Wall</td>
<td>Single Pipe</td>
<td>Figure 6-20, 6-19</td>
</tr>
<tr>
<td></td>
<td>Inside Air</td>
<td>Single Pipe</td>
<td>Figure 6-22</td>
</tr>
<tr>
<td>Sidewall</td>
<td>Roof</td>
<td>Single Pipe</td>
<td>Figure 6-21</td>
</tr>
<tr>
<td></td>
<td>Side Wall</td>
<td>Two Pipe</td>
<td>Figures 6-17, 6-18, 6-19</td>
</tr>
<tr>
<td></td>
<td>Inside Air</td>
<td>Single Pipe</td>
<td>Figure 6-23</td>
</tr>
</tbody>
</table>

Table 5B - Combustion Air - Venting Terminal Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Location</th>
<th>Terminal Type</th>
<th>Corresponding Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venting (Flue Gas)</td>
<td>Side Wall</td>
<td>S-Terminal with 90° elbow</td>
<td>Figure 6-17, 6-18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T-Terminal</td>
<td>Figure 6-19, 6-21, 6-23</td>
</tr>
<tr>
<td></td>
<td>Roof</td>
<td>Straight Terminal</td>
<td>Figure 6-16, 6-20</td>
</tr>
<tr>
<td>Combustion Air (Fresh Air)</td>
<td>Side Wall</td>
<td>Raised 90° down elbow</td>
<td>Figure 6-17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90° down elbow</td>
<td>Figure 6-18, 6-20</td>
</tr>
<tr>
<td></td>
<td>Roof</td>
<td>Raised 90° down elbow</td>
<td>Figure 6-16</td>
</tr>
</tbody>
</table>

Note: Use of vent covers may cause freezing. If using vent covers overall vent length must be considered. Failure to heed this information may compromise operation of this boiler.
6 - COMBUSTION AIR AND VENT PIPING

Figure 6-14 Two Pipe Roof Vent
- 12” (205mm) Min. horizontal separation between combustion air intake and vent of same appliance.
- 12” (205mm) Min. vertical separation between combustion air intake and vent of different appliances.
- 15” (381mm) Max. horizontal length of vent.
- Min. vent/intake between different appliances 12” (305mm).
- Max. allowable total vertical vent length with outside exposure is 10 ft. (3.05m).
- Abandoned unused masonry chimney may be used as chaseway for combustion air and vent. Both combustion air and vent pipe must exit above top of chimney with clearances as shown in figure 6-14.

Figure 6-15 Two Pipe Side Wall Vent
- 3” (76mm) Min. 24” (610mm) Max. Separation horizontal separation between combustion air intake and vent terminations.
- 12” (305mm) Min. vertical separation between combustion air intake and vent terminations.
- 12” (305mm) Min. 24” (610mm) Max. separation between bottom of combustion air intake and bottom of vent.
- Multiple terminations as shown in 6-1, and 6-3 must be a min. of 12” (305mm) horizontally between vent of one termination and air intake of next appliance. Manufacturer recommends greater separation.
- Max. allowable total outside exposure vent length equals 10 ft. (3.05m).
- Maintain a pitch of 1/2” per ft. (42mm/m) outside exposure back to boiler to ensure proper condensate drainage for horizontal runs.

Figure 6-16 Two Pipe Side Wall Vent (Multiple Appliances)
- Maintain 12"(305mm) US (18”(457mm) Canada) clearance above highest anticipated snow level 24” (610mm) above roof or ground.
- Avoid locations where snow may drift and block vent and combustion air. Ice or snow may cause boiler to shut down if vent or combustion air becomes obstructed.

Grade, Snow & Ice
- Combustion air and vent termination must be 12” (305mm) from or below doors, windows or gravity inlet.
FIGURE 6-17 Side Wall Venting Terminal w/T-Terminal

12" (305mm) Min. Separation of Combustion Air and Vent shall be maintained. No Maximum separation is required when using T-Terminal for vent.

Note: Configurations of single pipe vent with flue on the sidewall, requires a tee as the vent terminal. See figure 6-17, 6-19 and 6-21

Note: If separation in Fig. 6-15 is not large enough to prevent cross flow contamination between flue gas and fresh air use T-Terminal as shown in Fig. 6-17. Use of T-Terminal for vent as shown in Fig. 6-17 does not have a max. separation requirement between flue gas and fresh air.

FIG. 6-18 Flue on Roof, Air Intake on Side Wall

Maintain 12"(305mm) US (18"(457mm) Canada) clearance above highest anticipated snow level 24" (610mm) above roof or ground

FIG. 6-19 Flue on Sidewall, Combustion Air on Roof

Maintain 12"(305mm) US (18"(457mm) Canada) clearance above highest anticipated snow level 24" (610mm) above roof or ground

18" Vertical Clearance to ventilated soffit

P/N 240011664, Rev. D [06/30/2017]
FIGURE 6-20 Flue on Roof, Indoor Combustion Air

Maintain 12"(305mm) US (18"(457mm) Canada) minimum clearance above highest anticipated snow level maximum 24" (610mm) above roof.

FIGURE 6-21 Flue on Sidewall, Inside Combustion Air

18" Vertical Clearance to ventilated soffit

12"(305mm) US (18"(457mm) Canada) clearance above highest anticipated snow level maximum 24" (610mm) above roof.

NOTICE

Configurations of single pipe vent with flue on sidewall, requires tee as vent terminal. See figures 6-19 and 6-21.
6.7 Side Venting Terminal Requirements of:
- Canada - Natural Gas and Propane Installation Code, CAN/CSA B149.1

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venting terminal from doors and windows</td>
<td>6-22</td>
</tr>
<tr>
<td>Venting terminal from forced air inlet of other appliances</td>
<td>6-23</td>
</tr>
<tr>
<td>Venting terminal from snow level</td>
<td>6-24</td>
</tr>
<tr>
<td>Venting terminal from vegetation</td>
<td>6-25</td>
</tr>
<tr>
<td>Venting terminal from public walkway</td>
<td>6-26</td>
</tr>
</tbody>
</table>

FIGURE 6-22

Termination must be min. 12" (305mm) from or below doors, windows or gravity inlet. If boiler uses inside air min. 4' (1219 mm).

Doors & Windows
Combustion air and vent termination must be min. 12" (305mm) from or below doors, windows or gravity inlet. If boiler uses inside air min. 4' (1219 mm).

Condensate
Vent gas may condense, forming moisture, may be corrosive. Protect building materials at vent from exhaust of vent gas.

FIGURE 6-23

Termination must be min. 12" (305mm) from or below doors, windows or gravity inlet. If boiler uses inside air min. 4' (1219 mm).

Forced Air Inlet
Terminate venting system minimum 3' (914mm) above and 10' (3.0m) from any forced air inlet (except boiler’s combustion air inlet).

FIGURE 6-24

Termination must be min. 12" (305mm) US, 18" (457mm) Canada clearance above highest anticipated snow level, 24" (610mm) above roof.

Grade, Snow & Ice
Avoid locations where snow may drift and block vent and combustion air. Ice or snow may cause boiler to shut down if vent or combustion air becomes obstructed.

"L" Corner
Vent termination shall NOT be installed closer than 3' (914mm) from inside corner of “L” shaped structure.
FIGURE 6-25

<table>
<thead>
<tr>
<th>Vegetation, Plants & Shrubs</th>
<th>Keep vent termination 3’ minimum (914mm) away from vegetation. Position termination where vent vapors will not damage plants/shrubs or air conditioning equipment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meters, Regulators, deck, porch</td>
<td>Vent termination US only - 4’ (1.2m), Canada - 6’ (1.9m) horizontally from, no case above or below, electric meters, gas meters, regulators, and relief equipment, or under deck or porch.</td>
</tr>
</tbody>
</table>

![Diagram](image)

- **3’ (914mm) Minimum**
- **Termination**

FIGURE 6-26

<table>
<thead>
<tr>
<th>Walkways</th>
<th>Locate vent termination minimum 7’ (2.1m) above any public walkway, with consideration to condensate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>People or Pets</td>
<td>Locate combustion air and vent termination to prevent accidental contact with people or pets.</td>
</tr>
<tr>
<td>Stones, Balls, Etc.</td>
<td>Position combustion air and vent termination where it will NOT be damaged by foreign objects, such as stones, balls, etc.</td>
</tr>
</tbody>
</table>

![Diagram](image)

- **7’ (2.1m) Minimum**
- **Location**

Multiple Family Dwellings

- Vent shall not terminate directly above paved sidewalk or paved driveway located between two single-family dwellings serving both dwellings.

Vapors

- Position termination where vent vapors are not objectionable.

Eddy, Flue Gases

- Position termination so it will not be effected by wind eddy, air born leaves, snow, or recirculated vent gases. Give consideration to excessive wind and locate away from windward side of building.
FIGURE 6-27 Flue Termination Location

Vent Termination Minimum Clearances

<table>
<thead>
<tr>
<th></th>
<th>USA</th>
<th>CANADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Clearance above grade, veranda, porch, deck, or balcony</td>
<td>12" (305mm)</td>
</tr>
<tr>
<td>B</td>
<td>Clearance to window or door that may be opened</td>
<td>12" (305mm)</td>
</tr>
<tr>
<td>C</td>
<td>Clearance to permanently closed window</td>
<td>12" (305mm)</td>
</tr>
<tr>
<td>D</td>
<td>Vertical Clearance to ventilated soffit located above the terminal within a horizontal distance of 2 feet (610 mm) from the center line of the terminal</td>
<td>18" (457mm)</td>
</tr>
<tr>
<td>E</td>
<td>Clearance to unventilated soffit</td>
<td>18" (457mm)</td>
</tr>
<tr>
<td>F</td>
<td>Clearance to outside corner</td>
<td>9" (229mm)</td>
</tr>
<tr>
<td>G</td>
<td>Clearance to inside corner</td>
<td>6" (152mm)</td>
</tr>
<tr>
<td>H</td>
<td>Clearance to each side of center line extended above meter/ regulator assembly</td>
<td>3 ft. (0.9m) within a height of 15 ft. (4.5m) above the meter/ regulator assembly</td>
</tr>
<tr>
<td>I</td>
<td>Clearance to service regulator vent outlet</td>
<td>3 ft. (0.9m)</td>
</tr>
<tr>
<td>J</td>
<td>Clearance to non-mechanical air supply inlet to building or the combustion air inlet to any other appliance</td>
<td>12" (305mm)</td>
</tr>
<tr>
<td>K</td>
<td>Clearance to mechanical air supply inlet</td>
<td>3 ft. (0.9m)</td>
</tr>
<tr>
<td>L</td>
<td>Clearance above paved sidewalk or paved driveway located on public property</td>
<td>7 ft. (2.1m)</td>
</tr>
<tr>
<td>M</td>
<td>Clearance under veranda, porch, deck or balcony</td>
<td>12" (305mm)</td>
</tr>
</tbody>
</table>

* For clearances not specified in ANSI Z223.1/NFPA 54 or CSA B149.1, clearance will be in accordance with local installation codes and requirements of gas supplier and these installation instructions.

(1) Vent shall not terminate directly above sidewalk or paved driveway located between two single family dwellings and serves both dwellings.

(2) Permitted only if veranda, porch, deck or balcony is fully open on a minimum of one side beneath the floor.

Note: Local Codes or Regulations may require different clearances. Flue termination must be exposed to external air and position must allow free passage of air across it at all times. In certain weather conditions termination may emit a plume of steam. Avoid positioning termination where this may cause nuisance.
6.8 Condensate Piping

- Use materials acceptable to authority having jurisdiction. In absence of such authority:
 - USA - PVC or CPVC per ASTM D1785/D2845 Cement or primer per ASME D2564 or F493.
 - Canada - CSA or ULC certified PVC/CPVC pipe, fittings and cement.
- Slope condensate drain pipe minimum 1/4" per foot (21mm/m) away from boiler.
- Use field source condensate pump if boiler located below disposal point.
- Field source condensate neutralizing kit as required by authority having jurisdiction or for environmentally friendly condensate disposal.
6.9 Multiple Boiler Venting - General

- Approved vent manufacturer - DuraVent - Concentric only.

- See Figures 6-35, 6-36 and 6-37. Termination must be vertical through the roof. Sidewall horizontal terminal not allowed.

- Ensure minimum downward slope of 2 in (50.00 mm) for every 3 ft 4 in (1.00 m) of duct length toward boiler.

- Manufacturer recommends use of CO monitor, calibrate regularly per CO monitor manufacturer instructions.

- Place pipes at least 1 in (30 mm) from heat sources.

- Keep area clean and free of debris.

- Use only water (H₂O) as lubricant when inserting pipes together. Do NOT use any type of grease or similar substances.

- Do NOT use screws to secure pipes together.

- Before securing pipe with clamps, verify pipe is inserted into gasket between 1/32 in and 19/32 in (8.0-15 mm).

- Install steel strapping (A) of pipe (B) distance of 10 in (250.0 mm) from boiler.

- Secure flue pipe to wall with supports 4 ft. (1 meter) from each other. Secure supports along the joint of each pipe.

6.10 Multiple Boiler Venting - Mounting Procedure - See Figures 6-29 thru 6-33

1. Vent pipes correctly mounted. See Figure 6-29.

2. Line horizontal common vent pipes with male end towards condensate collector end cap.

3. Fully insert male end of horizontal common vent pipe into bell end of another horizontal common vent pipe. Mark horizontal common vent pipe male end once fully inserted. Pull horizontal common vent pipe back 1/32 in. to 19/32 in. from full insertion.

4. Hang horizontal common vent pipe, do not fully tighten clamps down.

5. Connect end cap and condensate trap to horizontal common vent pipe. See Figure 6-31.

6. Connect 90° elbows to horizontal common vent pipe for each boiler in cascade system

7. Connect flue damper to 90° elbow for each boiler in cascade system.

WARNING

Asphyxiation hazard. DO NOT use screws to secure piping together. Failure to follow these instructions could cause death or serious injury.

![FIGURE 6-29 Correctly Mounted Piping](image1)

![FIGURE 6-30 Correctly Mounted Piping](image2)

![FIGURE 6-31 Correctly Mounted Piping](image3)
8. Connect boiler flue adapter to flue damper for each boiler in cascade system. Ensure flue adapters allow for 3° or 2 in. per 3 ft. slope of horizontal collectors back towards condensate collector.

9. Connect intake air screen to flue adapter for each boiler in cascade system.

10. Connect cascade vent system to flue connection on top of boilers.

11. Connect end cap and condensate trap to horizontal common vent pipe.

12. Secure flue adapters using approved clamps to wall. Ensure clamps are connected minimum of 10 in. from top of boiler. See Figure 6-32.

13. Secure approved clamp around flue adapter. Ensure clamp is locked in to proper position. See Figure 6-32.
 A. Position 1 - Clamping around bell end of adapter.
 B. Position 2 - Clamping around flue pipe adapter.

14. Maximum distance between supports for horizontal pipes 3 ft 4 in. Maximum distance between supports for vertical pipes 6 ft 7 in. See Figure 6-33.

15. Fully tighten horizontal common vent pipe supports.
6.11 Multiple Boiler Venting - Venting Layout

Available pressure at flue outlet is 0.40" w.c. (100pa)

<table>
<thead>
<tr>
<th>Heat input BTUH</th>
<th>Heat input (kW)</th>
<th>Number of appliances</th>
<th>6 in (150 mm)</th>
<th>6 in / 8 in * (150 / 200 mm)</th>
<th>8 in (200 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>443,578</td>
<td>130</td>
<td>2</td>
<td>98 ft 4 13/16 in</td>
<td>30.0 m</td>
<td></td>
</tr>
<tr>
<td>887,156</td>
<td>260</td>
<td>4</td>
<td>98 ft 4 13/16 in</td>
<td>30.0 m</td>
<td></td>
</tr>
<tr>
<td>1,330,735</td>
<td>390</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

*6 in. / 8 in. Vent System:
- Horizontal vent pipe size 6 in. (150 mm)
- Vertical vent pipe size 8 in. (200.00 mm).
- Length between vertical vent pipe and last horizontal vent collector pipe = 3 ft 4 in (1.00 m).
- For calculating other lengths between last collector and shaft, length of vertical height must be reduced by this additional length and by the numbers of bends according to the table.

<table>
<thead>
<tr>
<th>Elbow Type</th>
<th>6 in.</th>
<th>8 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equivalent Length</td>
<td>Equivalent Length</td>
</tr>
<tr>
<td>-</td>
<td>5 ft 7 in</td>
<td>1.7m</td>
</tr>
<tr>
<td>45°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td>13 ft 1 in</td>
<td>4.0m</td>
</tr>
</tbody>
</table>

6 in. Cascade Vent System Example

<table>
<thead>
<tr>
<th>Elbow Equivalent Length</th>
<th>Number of Elbows</th>
<th>Equivalent Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°</td>
<td>-</td>
<td>13 ft 1 in (4.0m)</td>
</tr>
<tr>
<td>90°</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Equivalent Length 39 ft 4-21/64 in (12.0m)

FIGURE 6-34
A. Single Line System
System consisting of boilers arranged in line each connected to common exhaust manifold.

B. Back to Back System
This system consists of boilers installed back to back connected to a common exhaust manifold.
C. Double Line System
This system consists of boilers installed on two lines, connected to a common exhaust manifold.

6.12 Multiple Boiler Venting - Parameter Settings
To set parameter P19 see section 9.

<table>
<thead>
<tr>
<th>PARAMETER P19</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Revs/min (rpm) at minimum Power</td>
</tr>
<tr>
<td>Natural Gas (A)</td>
<td>LPG (E)</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Flue header size shall be calculated by qualified service agency during system design as required by local authority having jurisdiction.
FIGURE 7-1 Gas Connection (View from Back of Boiler)

7.1 General

- Use piping materials and joining methods acceptable to authority having jurisdiction. In absence of such requirements:
 - USA - National Fuel Gas Code, ANSI Z223.1/NFPA 54
 - Canada - Natural Gas and Propane Installation Code, CAN/CSA B149.1
- Size and install gas piping system to provide sufficient gas supply to meet maximum input at not less than minimum supply pressure. DMG-380 requires a gas rate of 377 ft³/h (10.7 m³/h) for Natural Gas (Gas A) and 149 ft³/h (4.2 m³/h) for Liquid Propane Gas (Gas E).
- Gas meter and supply pipes must be capable of delivering the listed quantity of gas in addition to demand from any other appliances in the house. DMG-380 requires a 1" (25.4 mm) gas supply pipe.
- Support piping with hooks straps, bands, brackets, hangers, or building structure components to prevent or dampen excessive vibrations and prevent strain on gas connection. Boiler will not support piping weight.
- Use thread (joint) compound (pipe dope) suitable for liquefied petroleum gas.
- Install external field sourced manual main gas shutoff valve, ground joint union, and sediment trap upstream of gas valve. See figure 7-2.
- Leak test boiler and gas line connections before placing boiler into operation.

7.2 LP Conversion

- See conversion instructions included with LP Conversion Kit. Purchased Separately.

<table>
<thead>
<tr>
<th>Gas Supply</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>3.0" w.c.</td>
</tr>
<tr>
<td></td>
<td>(0.7 kPa)</td>
</tr>
</tbody>
</table>
7.3 Leak Check Gas Piping
Pressure test boiler and gas connection before placing boiler in operation.

- Pressure test over 1/2 psig (3.5 kPa). Disconnect boiler and its individual gas shutoff valve from gas supply system.

- Pressure test at 1/2 psig (3.5 kPa) or less. Isolate boiler from gas supply system by closing manual gas shutoff valve. See figure 7-3.

- Locate leakage using gas detector, noncorrosive detection fluid, or other leak detection method acceptable to authority having jurisdiction. Do not use matches, candles, open flames, or other methods that can provide ignition source.

- Correct leaks immediately and retest.

DANGER
Fire Hazard. Do not use matches, candles, open flames, or other methods providing ignition source. Failure to comply will result in death or serious injury.
8.1 General
Electrically bond boiler to ground in accordance with requirements of authority having jurisdiction. Refer to:

- USA- National Electrical Code, ANSI/NFPA 70.

8.2 Electric Knockouts (Figure 8-1)

- Eight knockouts located on bottom of chassis.
 A. Thermostat (Section 8-10)
 B. Outdoor Reset (Section 8-9)
 C. Frost Protections (Section 8-12)
 D. DHW Sensor (Sections 8-11, 8-13)
 E. Release Input (Section 8-7)
 F. Shutdown Input (Section 8-15)
 G. Analog Input (Section 8-8, IF-01 board)
 H. Analog Output (Section 8-8, IF-01 board)
 I. Alarm (IF02 or SCU-S02 board)
 J. External Heat System Pump (Section 8-8, SCU-S02 board)
 K. DHW Diverter/Pump (Section 8-8)
 L. External Gas Shutoff (Section 8-8)
 M. Minimum Gas Pressure Switch (Section 8-8)
 N. Solar Input (Section 8-8)

8.3 Electrical Connections

- Boiler requires 120V 60Hz power supply. Verify electrical supply is polarized.
- Boiler shall be grounded and on dedicated circuit.
- Shall be one common isolator, providing electrical isolation for boiler and any external controls. Using PVC insulated cable 18 AWGx3C 221°F / 105 °C.
- All wiring must be installed in accordance with requirements of the National Electrical Code and any additional national, state, or local code requirements having jurisdiction. All wiring must be N.E.C. Class 1.
- Canada, installation must conform to CSA C22.1 Canadian Electrical Code Part 1 and any local codes.
- If replacing original boiler wiring use only TEW 105°C or equivalent.

WARNING
Electrical shock hazard. Turn OFF electrical power supply at service panel before making electrical connections. Failure to do so could result in death or serious injury.
8.4 Access To Connection Block

1. Unscrew two screws located under front panel a quarter turn. Remove panel.
2. Guide controller or thermostat wire through round grommet(s) on right side of boiler’s bottom plate right.
3. Tilt control box forward by opening holding clips located on each side of boiler.
4. Open control panel cabinet by unfastening clip on front of control box. Push lip back for latch.
5. Run wire(s) through grommet(s) in control panel cabinet.
6. Unscrew wire clamp (to access connection block) and bring wires through.
7. Connect wires to appropriate terminals on connection block.
8. Firmly tighten wire clamps and close control panel cabinet.

Various thermostats and controllers can be connected to standard control PCB (X12 connection block).

8.5 Main Supply Connection

Main supply is connected to terminal block X1 which is high voltage (120V / 60Hz).
8.6 Shutdown Input
- Boiler has a shutdown input, input is on **BL** terminals of control board.
- Only suitable for potential free contacts.
- When using this input remove jumper cable.
- Change input setting using **P36**. See parameter Settings page 59.

8.7 Release Input
- Boiler has release input, input is on **RL** terminals of connector.
- Change input setting using P37. See parameter Settings page 59.
- Only suitable for potential free contacts.

8.8 Optional Electrical Connections:

Auxiliary Control Box
Control PCBs are located in auxiliary control box. See instructions provided with control PCB.
- Unclip PCB cover
- Remove cover

Connection Options for 0-10V Control PCB (IF-01)
IF-01 control PCB is built into auxiliary control box. Refer to instructions supplied with product.
Do not connect freeze thermostat or room thermostat to boiler if using 0-10 V control PCB.

1. **Connection Status (Nc)** - If boiler locks out, a relay is de-energized and an alarm can be transmitted via a dry set of contacts (maximum 120 VAC-1A) on terminals **Nc** and **C** of the control board connection.
2. **Connection Status (OTm)** - Interface communicates with boiler control using **Open Therm** protocol. OTm connection must be connected to **Open Therm** input OT of boiler control.
3. **Analogue Input (0-10V)** - Control can be based on temperature or heat output. Two controls are described below. Analog control, 0-10 V signal must be connected to the interface.
4. **Analog Temperature-Based Control - 0 - 10 V**

Signal controls boiler supply temperature between 32ºF (0ºC) and 194ºF (90ºC). Control modulates on basis of supply temperature, heat output varies between minimum and maximum values based on supply temperature set point calculated by the controller. Jumper 2 on the interface is used to select either temperature control (°F/°C) or heat output control (%).

<table>
<thead>
<tr>
<th>Jumper 2</th>
<th>Input Signal (V)</th>
<th>Temperature (°F/°C)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 - 1.5</td>
<td>32-59 (0-15)</td>
<td>Boiler off</td>
</tr>
<tr>
<td></td>
<td>1.5 - 1.8</td>
<td>59.0-64.4 (15.0-18.0)</td>
<td>Hysteresis</td>
</tr>
<tr>
<td></td>
<td>1.8 - 10.0</td>
<td>64.4-176.0 (18.0-80.0)</td>
<td>Temperature required</td>
</tr>
</tbody>
</table>

5. **Analog Heat Output - Based Control - 0-10V**

Signal controls boiler output between 0% and 100%. Minimum and maximum values are limited. Minimum output is linked to boiler's modulation depth. Output varies between minimum and maximum value on basis of value determined by controller.

<table>
<thead>
<tr>
<th>Jumper 2</th>
<th>Input Signal (V)</th>
<th>Temperature (°F/°C)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>0.0 - 2.0</td>
<td>32-68 (0-20)</td>
<td>Boiler off</td>
</tr>
<tr>
<td></td>
<td>2.0 - 2.2¹</td>
<td>68-72 (20-22)</td>
<td>Hysteresis</td>
</tr>
<tr>
<td></td>
<td>2.0 - 10.0¹</td>
<td>72-176 (20-80)</td>
<td>Temperature output required</td>
</tr>
</tbody>
</table>

*(¹) Dependent on minimum modulation depth (set speeds, standard 20%)

6. **Analog Output - 0-10V** - Temperature or heat output can be chosen for this feedback message. The two controls are described briefly below.

Jumper 1 on the interface is used to select either temperature control (°F/°C) or heat output control (%).

<table>
<thead>
<tr>
<th>Jumper 1</th>
<th>Input Signal (V)</th>
<th>Temperature (°F/°C)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>32-59 (0-15)</td>
<td>Boiler off</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>59-72 (15-20)</td>
<td>Hysteresis</td>
</tr>
<tr>
<td></td>
<td>2.0 - 10.0¹</td>
<td>72-176 (20-80)</td>
<td>Temperature required</td>
</tr>
</tbody>
</table>

*(¹) Dependent on minimum modulation depth (set speeds, standard 20%)
Connection Option For PCB (SCU-S02)
If boiler is fitted with control PCB (SCUS02) it will automatically be recognized by the automatic boiler control.

If removing this PCB boiler will show fault code E38. To prevent this fault, auto-detect must be done after removing the PCB. See Auto-Detect.

LED status indicator D3 top right of control PCB indicates status:
- Continuous signal: PCB working normally.
- Flashing signal: No connection.
- No signal: No voltage or faulty PCB (Check wiring).

1. Heating System External Pump Control - External pump for heating system can be connected to Pump terminals of control board. Maximum input power is 300 VA/ 0.4 FHP. Auxiliary relay must be used for pump with larger input.

2. External Three-Way Valve (3WV) Control - External three-way valve (120 VAC) can be used when connecting DHW indirectly water heater. Neutral position of three-way valve can be set using parameter P34. Three-way valve is connected as follows:
 - N = neutral
 - C = heating system
 - D = indirect tank

If neutral position of three-way valve is adjusted with parameter P34 connect the pump as follows:
 - N = N pump.
 - C = L pump.
 - ⬤ = Ground

3. External Gas Valve Control - If there is a call for heat, alternating voltage of 120 VAC, 1 A (maximum) becomes available on EgV terminals of control board to control an external gas valve.

4. Operation Signal And Failure Signal (EgV) - Alarm or operation signal is selected using parameter P40.
 - If boiler is operating, operation signal can be switched using dry set of contacts (maximum 120 VAC, 1 A) on NO and C terminals of the connection.
 - If boiler locks out, alarm can be transmitted using dry set of contacts (maximum 120 VAC, 1 A) on No and C terminals of connection.

5. Pressure Switch Minimum GPS - minimum gas pressure switch shuts boiler down if inlet gas pressure becomes too low. Connect minimum gas pressure switch to Gps terminals. Presence of gas pressure switch must be set using parameter P41.
8.9 Outdoor Temperature Sensor

Outdoor Temperature
Flow Temperature

P1 - Supply temperature (maximum)
P25 - Supply temperature (minimum)
P26 - "WWSD" (Warm Weather Shutdown)
P27 - Outdoor temperature (default)

If outdoor temperature sensor is connected, heating curve can be adjusted. Setting can be modified using parameters - P1, P25, P26 and P27.

• Outdoor Sensor, if used.
 A. Provided with boiler.
 B. Locate outdoor sensor to protect against wind and direct sunlight. Mounting instructions provided with sensor.
 C. Maximum wire length is 100 ft (30m) for 22 ga. wire, or 150 ft (45m) for 18 ga. wire.
 D. Connect wires to OUTDOOR SENSOR terminals.
 E. Outdoor temperature sensors are a boiler accessory. Where there is an on/off thermostat, boiler will control the temperature with set point of the internal heating curve.

8.10 Central Heating Thermostat

A. If a room thermostat with an anticipator is used, parameter P5 must be adjusted.
B. Install thermostat in frequently occupied room.
C. Connect 2 wire dry contact room thermostat to ON/OFF-OT terminals of boiler’s control board connection. Note: ON/OFF-OT terminals are NOT able to supply 24V to the thermostat.
D. Use thermostat or boiler system control with dry contacts related 0.5 amps @ 120 VAC. Boiler control does NOT provide 24 VAC power to central heating thermostat.
E. Locate and install thermostat per manufacturer’s instructions. Maximum wire length is 330 ft (100m) for 22 ga. wire.
F. Connect wires to on/off - OT terminals. Wires are interchangeable.
G. Boiler is not suitable for Nest type thermostat without external AC power supply.

Note: Use dry contact for wires to CH T-T terminal and DHW T-T terminal. E33 error code is displayed if voltage is sent back to the control board. If error is not corrected for extended period of time, this voltage can permanently damage control board.

If room thermostat with anticipator is used, parameter P must be adjusted.
8.11 DHW Indirect Water Heater
Connect DHW indirect tank sensor or thermostat (TS) to "T dhw" terminals on control board.

8.12 Frost Protection
Frost protection in combination with ON/Off thermostat.

- If ON/Off thermostat is used, protect any rooms where there is a risk of freezing by using freeze thermostat (FT). Radiator valves or zone where there is risk of freezing must be open.

- Connect frost thermostat in parallel with On/Off room thermostat (RT) to ON/Off_OT terminals of control board connection.

Frost protection in combination with outdoor temperature sensor.

- Heating system can be protected against freezing in combination with outdoor temperature sensor. Radiator valve or zone must be open where there is a risk of freezing.

- Connect outdoor temperature sensor to "T out" terminals of control board.

- Frost protection activates when outdoor temperature sensor reads a temperature lower than 10°F (-10°C). This can be adjusted using parameter P30. Circulation pump will switch on and operate continuously until the outdoor temperature increases past value set on parameter P30.
FIGURE 8-14 Example Of Hydronic Circuit With DHW Indirect Water Heater

- Connect Indirect tank sensor to T_{dhw} terminals as described in section 8.11.
- Connect CH (Central Heating) pump on terminal N-L "Pump" of control PCB (SCU-02) see section 8.8.
- Connect DHW (Domestic Hot Water) pump on terminal N-D "$3wV$" of control PCB (SCU-02) see section 8.8.

FIGURE 8-15 Example Of System Shutdown Input Connection

Example below shows connection of shutdown input for system connecting to auxiliary board. See section 8.6.
FIGURE 8-16 Wiring Diagram
9.1 Fill Condensate Trap with Water

WARNING
Asphyxiation hazard! Fill condensate trap before starting boiler to avoid combustion products escaping boiler. Failure to follow these instructions could result in death or serious injury.

- To fill the condensate trap pour water into exhaust vent until water begins to flow through the siphon.
- Visually inspect the siphon to ensure it is full with clean water.
- During operation check the condensate trap to ensure it draining properly.

Condensate trap must be manually filled with water at initial start up.

Note

9.2 Commission Setup (Water)

- Check distribution system to ensure it is sized and installed correctly.
- Before filling, open all valves on the heating circuit in the installation.
- Flush heating system, including all heating zones.
- Fill boiler with potable water.
- Fill boiler and system piping with water (or antifreeze-water solution, if used). See antifreeze information page 10. Purge air from boiler using air vent. Purge air from system piping.
- Close air vent after all air is purged from both boiler and system piping.
- Inspect system piping and boiler connections. Repair any leaks immediately.
- Check water pressure gauge is between 14.7-22.1 psi (1-1.5 bar) when system water temperature is cold. If pressure is lower turn water off. Turn water on and restart the filling process very slowly to vent air. System must be turned not read pressure from display.
- Boiler is equipped with hydraulic pressure switch which prevents boiler from operating without water.
- Check there are no leaks from any water connections.
9.3 Commission Setup (Gas)
1. Check gas type supplied matches data shown on boiler's rating plate.
2. Check gas piping to ensure it is sized and installed correctly.
3. Visually inspect piping to determine there are no open fittings or ends, and all valves at unused outlets are closed and plugged/capped.
4. Purge air from piping. Confirm there is a steady gas supply to the boiler.
5. Open main gas supply.
6. Open gas shutoff valve on boiler.
7. Unscrew, quarter turn, two screws located under front panel, remove the panel.
8. Tilt control box forward by opening holding clips located on each side of the boiler.
9. Check gas supply pressure at pressure outlet "Pi" on gas valve unit.
10. Ensure all gas connections are tight.
11. Pressure test the gas line:
 A. Test pressure must not exceed 0.87 psig/60 mbar.
 B. Purge gas supply pipe within boiler by unscrewing pressure outlet on gas valve.
 C. Tighten the port when pipe has been sufficiently purged.
12. Check all gas connections in the boiler are tight.
13. Check piping and connections for leaks immediately after gas is turn on. Shut off gas supply and make necessary repairs if leaks are found.

9.4 Commission Setup (Electric)
1. Check electrical connections to thermostat and other external controls. Check any other connections to boiler.
2. Check all electrical connections, particularly the ground connection.
3. System test pumps - verify each pump is operational using vibration, noise and amp draw.
9.5 Control Panel

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Information menu: Reading the various current values</td>
</tr>
<tr>
<td></td>
<td>Chimney-sweeping position: Forced full or part load for CO2 measurement.</td>
</tr>
<tr>
<td></td>
<td>User menu: Parameters at user level can be changed.</td>
</tr>
<tr>
<td></td>
<td>Heating program deactivated: The heating function is deactivated.</td>
</tr>
<tr>
<td></td>
<td>Manual mode: Boiler is set to manual operation.</td>
</tr>
<tr>
<td></td>
<td>DHW program deactivated: DHW mode is deactivated.</td>
</tr>
<tr>
<td></td>
<td>Service menu: Parameters at installer level can be changed.</td>
</tr>
<tr>
<td></td>
<td>Energy-saving mode: Economic mode activated.</td>
</tr>
<tr>
<td></td>
<td>Fault: Boiler fault indicated. Can be seen from code and red display.</td>
</tr>
<tr>
<td></td>
<td>Frost protection: Boiler running in frost protection mode.</td>
</tr>
<tr>
<td></td>
<td>Hour counter menu: Readout of operating hours, number of successful starts and hours on main supply.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.6 Deaeration Function

Note
Control performs the Deaeration function at initial start and after a reset of a locking error and after power up.

Before starting boiler deaeration function must be performed.

Rotate black cap on deaerator, located on the top of the boiler, counter clockwise to ensure aerator is open.

- When power is supplied to the boiler Deaeration function starts.
- Display shows 17 (Deaeration) and water pressure (Psi). See Figure 9-4.
- Boiler pump will run on and off for up to 10 minutes. This will purge air from the system.
- The burner will switch on for a few seconds to verify increasing temperature on flow/return sensors.
- Boiler is ready to start in standard operation.

Repeat Deaeration function at least 3 times switching boiler on off using button.
9.7 Commissioning
- Tilt control box upwards. Fasten with clips located at the sides.
- Open main gas supply.
- Open gas shutoff valve on boiler.
- Plug boiler into an electrical socket.
- Turn boiler on using ON/OFF switch.
- Set controls (thermostats, control system) to generate a call for heat.

Start-up cycle begins, this cannot be interrupted.
During start-up cycle, display shows following information:
A short test where all segments of the display are visible.

- **Fxx**: Software version
- **Pxx**: Parameter version. Version numbers are displayed alternately.
- Air purge cycle is automatically carried out for 3 minutes.

9.8 Before Gas Conversion
When converting from natural gas (A) to propane gas (E), before calibrating gas valve, replace venturi assembly (B) as indicated in figure 9-5.
Disconnect gas pipe (threaded nut "C") and remove three screws securing the flange.
Verify there are no gas leaks.

9.9 Gas Conversion (Propane)
Boiler is preset to operate on natural gas (A).
For operation with propane gas, carry out following:

1. Activate "Calibration function" to set boiler to operate on full load and on part load in Heating mode.
2. Adjust Fan Speed as indicated in table found in section "Parameter Settings" (if required).
3. Modify fan speeds using parameters **P17**, **P18** and **P19**.
4. Set air/gas ratio (O₂ /CO₂ %): Full load and Part load as described below.
5. Use combustion analyzer to properly set gas valve.
6. Allow time between adjustments for your combustion analyzer to sense adjusted CO₂ /O₂ level. This function is interrupted if the central heating supply temperature reaches its MAX. SETPOINT.

To measure combustion efficiency and emissions of products of combustion, boiler has two dedicated built-in test ports.
One connection port is connected to exhaust flue (A), and allows monitoring of the quality of combustion products and combustion efficiency.
Other is connected to combustion air intake (B), used to check for recycling products for combustion.
The following can be measured at exhaust flue test port:
- temperature of combustion products
- oxygen (O₂) or carbon dioxide (CO₂) concentration;
- carbon monoxide (CO) concentration.
The temperature of combustion air must be measured on the air intake test port (B) by inserting the measurement sensor approximately 3-3/16" (80.00 mm) (C) for the DMG-240.

Natural Gas and Propane Venturi and Nozzle Specifications

<table>
<thead>
<tr>
<th>Natural Gas</th>
<th>Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venturi</td>
<td>Nozzle</td>
</tr>
<tr>
<td>in</td>
<td>mm</td>
</tr>
<tr>
<td>1 7/16</td>
<td>30</td>
</tr>
</tbody>
</table>

FIGURE 9-5 Venturi and Nozzle

FIGURE 9-6 Combustion Air Temperature Ports
9.10 Combustion Setup (High-Fire)
• Unscrew exhaust port plug at exhaust flue test port.
• Insert combustion analyzer into exhaust flue test port. Verify the opening around combustion analyzer probe is completely sealed when taking measurements.
• Set boiler to high-fire by pressing two buttons simultaneously. Display will show H3 and the symbol will appear.
• Measure percentage of \(O_2 \) or \(CO_2 \) in flue gases.
• Compare the measured values with values in table below.
• Adjust gas/air ratio using high-fire adjustment screw (V) if needed. Turn screw clockwise to reduce \(CO_2 \) level and counterclockwise to increase it.

<table>
<thead>
<tr>
<th>CO(_2) Values Natural Gas (A) at High Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Panel</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ON</td>
</tr>
<tr>
<td>OFF*</td>
</tr>
</tbody>
</table>

\[O_2/CO_2 \] Values at Low-Fire Natural Gas (A)

<table>
<thead>
<tr>
<th>Nominal value</th>
<th>Permitted value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O_2) %</td>
<td>(CO_2) %</td>
</tr>
<tr>
<td>5.7</td>
<td>8.5</td>
</tr>
<tr>
<td>5.4 - 6.1</td>
<td>8.8 - 9.2</td>
</tr>
</tbody>
</table>

\[O_2/CO_2 \] Values Propane Gas (E) at High Fire

<table>
<thead>
<tr>
<th>Front Panel</th>
<th>CO(_2) %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal</td>
</tr>
<tr>
<td>ON</td>
<td>10</td>
</tr>
<tr>
<td>OFF*</td>
<td>9.6</td>
</tr>
</tbody>
</table>

9.11 Combustion Setup (Low-Fire)
• Unscrew exhaust port plug at exhaust flue test port.
• Insert combustion analyzer into exhaust flue test port. Verify the opening around combustion analyzer probe is completely sealed when taking measurements.
• Set boiler to low-fire by pressing two buttons simultaneously. If the boiler is already in combustion setup mode for high fire, press the (-) button several times until L3 is displayed on the screen.
• Measure percentage of \(O_2 \) or \(CO_2 \) in flue gases.
• Compare the measured values with values in table below. Remove front panel when comparing values.
• Adjust gas/air ratio using low-fire adjustment screw (K) if needed. Turn screw clockwise to increase \(CO_2 \) level and counterclockwise to decrease it.

9.12 Operational Check
• Inspect combustion air and vent piping. Verify pipe is not leaking and terminations are unobstructed. Verify vent gas discharge is not a nuisance or hazard.
• Verify boiler functions.
• Inspect condensate disposal system. Verify condensate flows adequately and is disposed properly.
• Check control module operation.
• Check field sourced limits, low water cutoffs, etc. per manufacturer’s instructions.
9.13 User Level Parameters
Parameters P_1 to P_8 can be adjusted by end user to meet heating system and DHW comfort needs.

Modification of factory settings may be detrimental to operation of the boiler.

- Press the two Menu buttons simultaneously and then (+) button until symbol flashes on the menu bar.
- Select the user menu using button, (P_1) button is displayed with "1" flashing.
- Press button a second time, the central heating supply temperature value appears and flashes, e.g. 170°F.
- Change the value by pressing (-) button or (+) button. In this example using (-) to (140°F).
- Confirm the value with button, (P_1) is displayed with "1" flashing.
- Press button 2 times to return to current operating mode.

9.14 Installer Level Parameters
Parameters P_{17} to dF (error code history) must only be modified by a qualified installer.

To prevent unwanted settings, some parameter settings can only be changed after special access code 0012 is entered.

Modification of factory settings may be detrimental to operation of the boiler.

- Press the two Menu buttons simultaneously and then (+) button until symbol flashes on the menu bar.
- Select the INSTALLER menu using the button. "CODE" appears on the display.
- Use (-) or (+) button to input the installer code "0012".
- Confirm using button, "P_1" is displayed with "1" flashing.
- Press button a second time, the value will appear and flashes, for example [80°C (176°F)].
- Change the value by pressing the [-] or [+] button. [In this example using [-] button to change the value to 60 °C (140 °F).]
- Confirm the value with the button, “P_1” is displayed with 1 flashing. Button, "P1" is displayed with 1 flashing. If necessary, set other parameters by selecting them using the (-) or (+) button.
- Press button 2 times to return to current operating mode.
9.15 Parameters Settings

Boiler control panel is set for most common heating systems. With these settings, most heating systems operate correctly; however, installer can adjust parameters according to their own preferences.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Adjustment Range</th>
<th>Factory Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Max flow temperature during CH mode</td>
<td>68 to 194°F (20 to 90°C)</td>
<td>176°F/80°C</td>
</tr>
<tr>
<td>P2</td>
<td>Desired DHW temperature</td>
<td>104 to 149°F (40 to 65°C)</td>
<td>140°F/60°C</td>
</tr>
<tr>
<td>P3</td>
<td>Switch on/off CH/DH function</td>
<td>0 = Heating off / DHW off 1 = Heating on / DHW on 2 = Heating on / DHW off 3 = Heating off / DHW on</td>
<td>2</td>
</tr>
<tr>
<td>P4</td>
<td>Keeping warm for DHW comfort</td>
<td>0 = Always on 1 = Always off 2 = Controller</td>
<td>2</td>
</tr>
<tr>
<td>P5</td>
<td>Anticipation current on/off thermostat</td>
<td>0 = No 1 = Yes</td>
<td>0</td>
</tr>
<tr>
<td>P6</td>
<td>Amount of information on display</td>
<td>0 = Simple 1 = Extended 2 = Automatic</td>
<td>1</td>
</tr>
<tr>
<td>P7</td>
<td>Pump post run time CH</td>
<td>1 to 98 minutes 99 minutes = continuous</td>
<td>3</td>
</tr>
<tr>
<td>P8</td>
<td>Display brightness when backlight is active</td>
<td>0 = Low 1 = High</td>
<td>1</td>
</tr>
<tr>
<td>P17</td>
<td>Max fan speed during CH mode</td>
<td>Natural gas (x100 rpm) 64 73 Propane (x100 rpm) 63 71</td>
<td>Natural gas (x100 rpm) 64 73 Propane (x100 rpm) 63 71</td>
</tr>
<tr>
<td>P18</td>
<td>Max fan speed during DHW mode</td>
<td>Natural gas (x100 rpm) 64 73 Propane (x100 rpm) 63 71</td>
<td>Natural gas (x100 rpm) 64 73 Propane (x100 rpm) 63 71</td>
</tr>
<tr>
<td>P19</td>
<td>Minimum fan speed during CH + DHW mode</td>
<td>Natural gas (x100 rpm) 16 12 Propane (x100 rpm) 15 12</td>
<td>Natural gas (x100 rpm) 16 12 Propane (x100 rpm) 15 12</td>
</tr>
<tr>
<td>P20</td>
<td>Offset on partload fan speed</td>
<td>Natural gas (x100 rpm) 0 0 Propane 0 0</td>
<td>Natural gas (x100 rpm) 0 0 Propane 0 0</td>
</tr>
<tr>
<td>P21</td>
<td>Fan speed at the boiler start</td>
<td>(x100 rpm)</td>
<td>30</td>
</tr>
<tr>
<td>P22</td>
<td>Minimum water pressure for notification</td>
<td>5 = 7.3 psig/0.5 bar</td>
<td>5</td>
</tr>
<tr>
<td>P23</td>
<td>Maximum flow temperature for heating system</td>
<td>32 to 190°F 0 to 88°C</td>
<td>68°F/20°C</td>
</tr>
<tr>
<td>P24</td>
<td>Hysteresis anticycle CH</td>
<td>5 to 59°F -15 to 15°C</td>
<td>68°F/20°C</td>
</tr>
<tr>
<td>P25</td>
<td>Maximum outdoor temperature (for use with an outdoor temperature sensor only)</td>
<td>32 to 86°F 0 to 30°C</td>
<td>241</td>
</tr>
<tr>
<td>P26</td>
<td>Footpoint heating curve flow temperate Maximum outdoor temperature (for use with an outdoor temperature sensor)</td>
<td>32 to 194°F 0 to 90°C</td>
<td>68°F/20°C</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Adjustment Range</td>
<td>Factory Setting</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------------------------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| P27 | Clima point heating curve outside temperature (Only with an outdoor temperature sensor) | -22 to 32ºF
-30 to 0ºC
241 = 5ºF/-15ºC | 241 |
| P28 | Pump control, CH minimum speed | 2 - 10 (x 10 %) | 7 |
| P29 | Pump control, CH maximum speed | 2 - 10 (x 10 %) | 10 |
| P30 | Minimal outside temperature for frost protection | -22 to 32ºF
-30 to 0ºC
246 = 14ºF/-10ºC | 246 |
| P31 | Legionella protection calorifier | 0 = No
1 = Yes
2 = Controller | 1 |
| P32 | Set point raise at warming up calorifier | 32 to 77ºF
0 to 25ºC
68ºF/20ºC | 68ºF/20ºC |
| P33 | Switch on hysteresis calorifier sensor | 35.6 to 59ºF
2 to 15ºC
41ºF/5ºC | 41ºF/5ºC |
| P34 | 3 way valve stand by: CH or DHW | 0 = CH
1 = DHW | 0 |
| P35 | Boiler type and control type | 0 = Solo (+boiler)
1 = Process heat | 0 |
| P36 | Function of blocking input | 0 = CH enable
1 = Blocking without frost protection
2 = Blocking with frost protection
3 = Lock-out with frost protection | 1 |
| P37 | Function of release input | 0 = DHW enable
1 = Burner release | 1 |
| P38 | Wait time for valid release signal | 0 to 255 seconds
0 = No check | 0 |
| P39 | Wait time for flue gas valve | 0 to 255 seconds | 0 |
| P40 | Position from alarm/operation signal relays | 0 = Operation signal
1 = failure signal | 1 |
| P41 | Minimum gas pressure detection | 0 = no
1 = yes | 0 |
| P42 | HRU connected | 0 = no
1 = yes | 0 |
| P43 | Mains L-N phase detection activated | 0 = No
1 = Yes | 0 |
| P44 | Service notification for boiler dependent maintenance | 0 = Off
1 = ABC
2 = Custom | 0 |
| P45 | Service hours for boiler connected to mains supply | 1 to 255 (x 100h) | 175 |
| P46 | Service hours for boiler burner | 1 to 255 (x 100h) | 30 |
Parameters Settings - Continued

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Adjustment Range</th>
<th>Factory Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>P47</td>
<td>Modulate back when dT > this parameter</td>
<td>41 to 140°F 5 to 60°C</td>
<td>140º/60ºC</td>
</tr>
<tr>
<td>P48</td>
<td>DHW stabilization time</td>
<td>10 to 100 seconds</td>
<td>30</td>
</tr>
<tr>
<td>P49</td>
<td>Display units</td>
<td>0 = Metric 1 = Imperial</td>
<td>1</td>
</tr>
<tr>
<td>P50</td>
<td>Factor for average flow temperature calculation</td>
<td>1 to 255 seconds</td>
<td>1</td>
</tr>
<tr>
<td>P51</td>
<td>Flue gas temperature</td>
<td>0 = PVC 65°C / 149°F 1 = CPVC 90°C / 194°F 2 = PP/SS 110°C / 230°F</td>
<td>1</td>
</tr>
<tr>
<td>P52</td>
<td>Air pressure sensor</td>
<td>0: Off 1: On</td>
<td>0</td>
</tr>
<tr>
<td>P53</td>
<td>DHW time out mode</td>
<td>0: None 1: Absolute</td>
<td>1</td>
</tr>
<tr>
<td>P54</td>
<td>DHW time out</td>
<td>10 to 180 minutes</td>
<td>150</td>
</tr>
<tr>
<td>P55</td>
<td>CH prior time</td>
<td>10 to 180 minutes</td>
<td>120</td>
</tr>
<tr>
<td>P56</td>
<td>RPM min antiwind</td>
<td>10 to 30 (*100rpm)</td>
<td>25</td>
</tr>
</tbody>
</table>

(1) Do not modify these factory settings unless absolutely necessary. Example: to adapt the boiler to: Propane (gas E)
9.16 Reading Measured Values

The following current values can be read from the information menu:

- \(\text{St} \) = State
- \(\text{Su} \) = Sub-status
- \(\text{t1} \) = Supply temperature °F/°C
- \(\text{t2} \) = Return temperature °F/°C
- \(\text{t3} \) = DHW tank temperature °F/°C
- \(\text{t4} \) = Outdoor temperature °F/°C (Only with an outdoor temperature sensor: Optional)
- \(\text{t5} \) = Solar boiler temperature °F/°C
- \(\text{t6} \) = Flue gas temperature °F/°C
- \(\text{Sp} \) = Internal set point °F/°C
- \(\text{Fl} \) = Ionization current (μA)
- \(\text{nf} \) = Fan speed in rpm
- \(\text{Pr} \) = Water pressure psig/bar
- \(\text{Po} \) = Supplied relative heat output (%).

Reading the Current Values

1. Press the two \(\text{C} \) buttons simultaneously. The symbol \(\text{C} \) flashes.
2. Confirm using \(\text{D} \) button. \(\text{SL} \) is displayed alternating with current status 3 (for example).
3. Press the \(\text{[+] button.} \) \(\text{SL} \) is displayed, alternating with the current sub-status \(\text{D} \) (for example).
4. Press the \(\text{[+] button.} \) \(\text{SL} \) is displayed, alternating with the current flow temperature \(\text{C} \) (for example).
5. Press the \(\text{[+] button successively to scroll down to the various parameters.} \)
6. Press the \(\text{[+] button.} \) \(\text{SP} \) is displayed, alternating with the internal set point \(\text{D} \) (for example).
7. Press the \(\text{[+] button.} \) \(\text{FL} \) is displayed, alternating with the current ionization current \(\text{D} \) (for example).
8. Press the \(\text{[+] button.} \) \(\text{OF} \) is displayed, alternating with the current fan rotation speed \(\text{D} \) (for example).
9. Press the \(\text{[+] button.} \) \(\text{Pr} \) is displayed, alternating with the current water pressure \(\text{D} \) (for example).
10. Press the \(\text{[+] button.} \) \(\text{Po} \) is displayed, alternating with the current modulation percentage \(\text{D} \) (for example).
11. Press the \(\text{[+] button.} \) The readout cycle starts again with \(\text{SL} \).
12. Press the \(\text{[+] button 2 times to return to the current operating mode.} \)
9.17 Status And Sub-Status

The information menu gives the following status and sub-status information:

<table>
<thead>
<tr>
<th>State (St)</th>
<th>Sub-status (Su)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Short pre-purge of the fan</td>
</tr>
<tr>
<td>2</td>
<td>Control three-way valve</td>
</tr>
<tr>
<td>3</td>
<td>Start pump</td>
</tr>
<tr>
<td>4</td>
<td>sw checks sensor temperatures before the burner starts</td>
</tr>
<tr>
<td>10</td>
<td>Open flue gas damper/external gas valve</td>
</tr>
<tr>
<td>11</td>
<td>Increase fan speed</td>
</tr>
<tr>
<td>13</td>
<td>Pre-purge</td>
</tr>
<tr>
<td>14</td>
<td>Wait for release signal from RL connection</td>
</tr>
<tr>
<td>15</td>
<td>Burner on</td>
</tr>
<tr>
<td>17</td>
<td>Pre-ignition</td>
</tr>
<tr>
<td>18</td>
<td>Ignition</td>
</tr>
<tr>
<td>19</td>
<td>Flame detection</td>
</tr>
<tr>
<td>20</td>
<td>Intermediate ventilation</td>
</tr>
<tr>
<td>30</td>
<td>Temperature control</td>
</tr>
<tr>
<td>31</td>
<td>Limited temperature control (ΔT safety)</td>
</tr>
<tr>
<td>32</td>
<td>Output controlled by 0-10 v signal</td>
</tr>
<tr>
<td>33</td>
<td>Temperature protection gradient level 1 (Modulate down)</td>
</tr>
<tr>
<td>34</td>
<td>Temperature protection gradient level 2 (low-fire)</td>
</tr>
<tr>
<td>35</td>
<td>Temperature protection gradient level 3 (Blockage)</td>
</tr>
<tr>
<td>36</td>
<td>Modulate up for flame control</td>
</tr>
<tr>
<td>37</td>
<td>Temperature stabilization time</td>
</tr>
<tr>
<td>38</td>
<td>Cold start</td>
</tr>
<tr>
<td>40</td>
<td>Burner off</td>
</tr>
<tr>
<td>41</td>
<td>Post-purge</td>
</tr>
<tr>
<td>42</td>
<td>Close flue gas damper/external gas valve</td>
</tr>
<tr>
<td>43</td>
<td>Recirculation protection (checks to see if gas valve has closed)</td>
</tr>
<tr>
<td>44</td>
<td>Fan Stops</td>
</tr>
<tr>
<td>60</td>
<td>Pump post circulation</td>
</tr>
<tr>
<td>61</td>
<td>Pump off</td>
</tr>
<tr>
<td>62</td>
<td>Control three-way valve</td>
</tr>
<tr>
<td>63</td>
<td>Short-cycling counter activates</td>
</tr>
<tr>
<td>0</td>
<td>Wait for burner start</td>
</tr>
<tr>
<td>1</td>
<td>Short cycling protection function</td>
</tr>
<tr>
<td>xx</td>
<td>Shutdown codexx</td>
</tr>
<tr>
<td>0</td>
<td>Rest</td>
</tr>
<tr>
<td>3</td>
<td>Start pump</td>
</tr>
<tr>
<td>61</td>
<td>Pump off</td>
</tr>
<tr>
<td>61</td>
<td>Control three-way valve</td>
</tr>
</tbody>
</table>
9.18 Return To The Factory Settings

- Press the two Menu buttons simultaneously and then (+) button until symbol flashes on the menu bar.
- Select the INSTALLER menu using. "COdE" appears on the display.
- Use (-) or (+) button to input the installer code "0012".
- Confirm using button. P:1 is displayed with 1 flashing.
- Press the [+] button several times p:df is displayed with df flashing.
- Press button df:x is displayed with x flashing. This is the current value of X for dF. Check this against the value of X on the type plate.
- Enter the value of X shown on the type plate using the [-] or [+] button.
- Confirm the value with the button, df:y is displayed with y flashing. This is the current value of Y for dU. Verify the value of y on the rating plate is the same.
- Enter the value of y shown on the rating plate using the [-] or [+] button.
- Confirm value with the button. The factory settings are reset.
- Display returns to current operating mode.
10 - OPERATING INSTRUCTIONS

FOR YOUR SAFETY READ BEFORE OPERATING

WARNING

If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

- This appliance is equipped with an ignition device which automatically lights burner. **Do NOT try to light this burner by hand.**
- Before operating smell all around appliance area for gas. Be sure to smell next to floor because some gas is heavier than air and will settle to the floor.
- **Use only your hand to turn the gas shutoff valve.** Never use tools. If valve will not turn by hand, do not try to repair it, call a qualified service technician. Force or attempted repair may result in fire or explosion.
- **Do not use this appliance if any part has been under water.** Immediately call a qualified service technician to inspect appliance and to replace any part of control system and any gas control which has been under water.

10.1 SEQUENCE OF OPERATION

- With demand for heat, pump circulates water through primary circuit.
- Combustion fan will come on and begin to operate at ignition speed.
- Once fan reaches ignition speed, control board will allow power to flow to spark generator and gas valve creating ignition in combustion chamber. Flame sensor will acknowledge presence of flame in combustion chamber and send a signal to control board.
- Temperature sensor will send signal to control board allowing the control board to increase / decrease speed of the fan. The combustion fan will in turn modulate gas rate accordingly.
- Once central heating loop temperature exceeds central heating loop setpoint unit will shutdown and go through 3 minute time delay (burner pause time) before another call for heat.
- During this time the pump will run for additional three minutes to dissipate any residual heat.

10.2 OPERATING INSTRUCTIONS

Stop! Read Safety information above.

- Set thermostat to lowest setting.
- Turn "OFF" all electrical power to appliance.
- This appliance is equipped with an ignition device which automatically lights the burner. **Do not try to light burner by hand!**
- Turn gas shutoff valve clockwise to closed position. Handle should be perpendicular to gas pipe.
- Wait 5 minutes for any gas to clear. Smell for gas, including near floor. If you smell gas, **STOP!** Follow instructions on this page: **“What To Do If You Smell Gas.”** If you do not smell gas, go to next step.
- Turn gas shutoff valve counter clockwise to the open position. Handle should be parallel to gas pipe.
- Turn "ON" electrical power to appliance.
- Set thermostat to desired setting.
- If the appliance will not operate, follow instructions TO TURN OFF GAS TO APPLIANCE and call your service technician or gas supplier.

CAUTION

WHAT TO DO IF YOU SMELL GAS

- Do not try to light any appliance.
- Do not touch any electrical switch; do not use any phone in your building.
- Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions.
- If you cannot reach your gas supplier, call the fire department.

10.3 TO TURN OFF GAS TO APPLIANCE

- Set thermostat to lowest setting.
- Turn "OFF" all electric power to appliance if service is to be performed.
- Turn gas shutoff valve handle clockwise to closed position. Handle should be perpendicular to gas pipe.
11 - GENERAL MAINTENANCE AND CLEANING

11.1 Beginning of Each Heating Season

- Check boiler area is free from combustible materials, gasoline, and other flammable vapors and liquids.

- Visually inspect combustion air and vent piping for proper operation. Check for and remove any obstruction to flow of combustion air or vent gases. Immediately repair or replace pipe showing deterioration or leakage. Reassemble per instructions in section 6. Ensure proper reassembly and resealing of system.

- Visually inspect condensate drain line for proper operation. Checking for deteriorated or plugged condensate drain line. Verify condensate trap drains freely and clean as required.

- Test safety relief valve for proper operation. Refer to valve manufacturer’s instructions packaged with relief valve.

- Examine flue passages in heat exchanger, burner, condensate lines, and cleaning (if necessary) by following instructions in “Annual Examination and Cleaning of Boiler Components” in this section.

CAUTION
Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation.

DANGER
Before servicing, turn off electrical power to boiler at service switch. Close manual gas valve to turn gas supply OFF to boiler. Failure to comply will result in death or serious injury.

Note
Verify proper operation after servicing.

Note
Perform regular service and maintenance by qualified service agency at least once every 12 months to assure safe, trouble free operation and maximum efficiency.

![Figure 11-1 Sight Glass](image_url)
11 - GENERAL MAINTENANCE AND CLEANING

- Circulator pump and combustion air blower motor furnished with boiler are permanently lubricated from factory and require no further lubrication. Lubricate field sourced pumps and/or motors according to pump and/or motor manufacturer’s instruction.

- Check following components are operating properly and are free of blockages or obstructions:
 - air vent;
 - check venturi air inlet for blockage and clean as required;
 - verify pressure test port cap and combustion test port are in place;
 - return temperature sensor clip must be securely seated on pipe; Check boiler for any sign of leaks.

- Check low water cutoff using user interface (if installed).
 - Check operation by pressing test button on low water cutoff.
 - "Low Water" LED should illuminate and burner should shut down.
 - Should get error message on User Interface (E36).
 - Every 5 years remove low water cutoff. Reinstall after cleaning.
 - Every 10 years replace low water cutoff.

- See Table 13 page 42 for flame signal rate at 100% firing rate (High fire).

- Visual inspection of flame through sight glass. Burner should be fully illuminated. See figure 11-1.

- Check heating system expansion tank.

11.2 Annual Shut Down Procedure

- Follow instructions “To Turn Off Gas To Appliance” unless boiler is also used to supply domestic hot water. See section 10.

- Drain system completely if system does not have antifreeze when heating system is to remain out of service during freezing weather.

- Drain condensate lines when boiler is to be exposed to freezing temperatures.

⚠️ WARNING

Following service procedures must be performed by qualified service agent. Boiler owner shall not attempt these steps. Failure to do so could result in death or serious injury.

11.3 Annual Inspection and Cleaning of Boiler Components

Obtain Burner Inspection Kit. Follow heat exchanger cleaning kit instructions for examination and cleaning.
11.4 Maintenance And Routine Servicing

Check and service boiler as necessary.
Frequency of servicing will depend upon installation conditions and usage, manufacturer recommends annually.

- Check flue termination outside verify it is not blocked.
- Operate boiler and verify operation of its controls and meets acceptable parameters.
- Ensure all system connections and fittings are tight and not leaking. Redo any joints and check the tightness of any fittings that may be leaking.
- Verify safety relief valve is in working order following its manufacturer's instructions.

To ensure boiler is operating at peak efficiency perform the following inspection:

- Check appearance and tightness of gas and combustion circuit gaskets
- Check condition and position of ignition/flame sensing electrode
- Check condition of burner and ensure it's secure to aluminum flange
- Check for any dirt in combustion chamber. Use vacuum-cleaner to clean combustion chamber.
- Check gas valve is calibrated correctly
- Check there is no dirt in condensate trap
- Check the central heating system pressure
- Check on expansion tank pressure
- Check vent system and clean it if necessary

Record details and maintain service history.

11.5 Component Replacement And Cleaning

1. Remove any deposits from heat exchanger using suitable soft brush. Do not use brush with metallic bristles.
2. Check condition of the combustion chamber insulation panels. Any damaged panels must be replaced.
3. Check condition of burner injector on the manifold, carefully clean it with a soft brush if necessary. Do not use a brush with metallic bristles this might damage the injector.
4. Remove any fallen deposits from bottom of inner case.
5. Clean burner with soft brush and check flame ports are clear. Blockages may be removed with stiffer brush.
6. Check condition of electrodes.
7. Check spark gap, positioning and height of electrodes.
8. Check fan impeller is clean and free to rotate.
11.6 Draining the Boiler
- Turn boiler off
- Isolate electrical supply
- Close boiler gas service cock
- Allow boiler to cool
- Drain boiler through onboard drain (item 19 page 7) or external drain valve.

Draining the Heating Circuit
- Follow all steps in 11.6.
- Close central heating flow and return valves.
- Connect suitable pipe to drain point.
- Route it to suitable container.
- Open drain tap.
12.1 Ratings and Capacities

- Constructed and hydrostatically tested for maximum allowable working pressure of 80 psig (pounds per square inch gauge) (663 kPa) in accordance with ASME Boiler and Pressure Vessel Code, Section IV, Rules for Construction of Heating Boilers.

- In USA, for elevations beyond 2,000-ft reduce input by 4% for each 1,000-ft above sea level in accordance with National Installation Code ANSI Z223.1.

- In Canada, input rate is reduced by 10% for elevations 2,000-ft to 4,500-ft. Contact Provincial Authority having jurisdiction for Installations above 4500-ft (1350m) above sea level.

TABLE 14: SEA LEVEL RATINGS
NATURAL AND PROPANE GASES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DMG-380</td>
<td>379</td>
<td>348</td>
<td>303</td>
<td>95.0</td>
</tr>
</tbody>
</table>

(1) 1000 Btu/hr (British Thermal Units Per Hour)

(2) Heating Capacity and AFUE (Annual Fuel Utilization Efficiency) are based on DOE (Department of Energy) test procedures.

(3) Net AHRI Ratings based on piping and pickup allowance of 1.15. Contact Technical Support before selecting boiler for installations having unusual piping and pickup requirements, such as intermittent system operation, extensive piping systems, etc.

12 - RATINGS AND CAPACITIES

<table>
<thead>
<tr>
<th>Central Heating</th>
<th>MAX</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-2,000 Ft</td>
<td>2,000-4,500 Ft</td>
</tr>
<tr>
<td>Heating Input (Gross)</td>
<td>MBH</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>kW</td>
<td>111.07</td>
</tr>
<tr>
<td>Heat Output (modulating)</td>
<td>Btu/h</td>
<td>348,040</td>
</tr>
<tr>
<td></td>
<td>kW</td>
<td>102</td>
</tr>
<tr>
<td>Gas Rate A (Natural Gas)</td>
<td>ft3/h</td>
<td>377.34</td>
</tr>
<tr>
<td></td>
<td>m3/h</td>
<td>10.69</td>
</tr>
<tr>
<td>Gas Rate E (LPG Gas)</td>
<td>ft3/h</td>
<td>149.16</td>
</tr>
<tr>
<td></td>
<td>m3/h</td>
<td>4.22</td>
</tr>
<tr>
<td>Max. CH Water Temp. (Approx.)</td>
<td>°F</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>°C</td>
<td>80</td>
</tr>
</tbody>
</table>
13.1 Troubleshooting
This boiler is fitted with an electronic regulation and control unit.

Control system is a microprocessor, Comfort Master©, which controls and protects the boiler. If a fault is detected anywhere in the boiler, boiler will lock out and display will show the fault code as follows:

Red flashing display:
- The ⚠ symbol
- The "RESET" symbol

Descriptions of each error code are given in the table below.

To reset an error code, press button for 2 seconds. If the error code continues to display, search for the cause in error table and follow instructions given in solution section.

Error Code Table

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
<th>Probable Causes</th>
<th>Checking/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>E00</td>
<td>Storage unit PSU parameter not found</td>
<td>Bad connection</td>
<td>Check the wiring</td>
</tr>
<tr>
<td>E01</td>
<td>The safety parameters are incorrect</td>
<td>Bad connection, PSU defective</td>
<td>Check the wiring, Replace PSU</td>
</tr>
<tr>
<td>E02</td>
<td>Supply temperature sensor short circuited</td>
<td>Bad connection, Sensor fault, Sensor not/poorly connected</td>
<td>Check the wiring, Check sensors are operating correctly, Replace sensor if necessary</td>
</tr>
<tr>
<td>E03</td>
<td>Supply temperature sensor open circuit</td>
<td>Bad connection, Sensor fault, Sensor not/poorly connected</td>
<td>Check the wiring, Replace sensor if necessary</td>
</tr>
<tr>
<td>E04</td>
<td>Temperature of heat exchanger too low.</td>
<td>Bad connection, Sensor fault, Sensor not/poorly connected, No circulation</td>
<td>Check the wiring, Replace sensor if necessary, Purge air in heating system, Check for water circulation (direction, pump, valves), Check water pressure, Check sensors are operating correctly, Check sensors have been correctly fitted, Check cleanliness of heat exchanger</td>
</tr>
<tr>
<td>E05</td>
<td>Heat exchanger temperature too high</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E06</td>
<td>Return temperature sensor short circuited</td>
<td>Bad connection, Sensor fault, Sensor not/poorly connected</td>
<td>Check the wiring, Check sensors has been correctly fitted, Check sensors are operating correctly</td>
</tr>
<tr>
<td>E07</td>
<td>Return temperature sensor open circuit</td>
<td>Bad connection, Sensor fault, Sensor not /poorly connected</td>
<td>Check the wiring, Check sensors has been correctly fitted, Check sensors are operating correctly</td>
</tr>
<tr>
<td>E08</td>
<td>Return temperature too low</td>
<td>Bad connection, Sensor fault, Sensor not/poorly connected, No circulation</td>
<td>Check the wiring, Replace sensor if necessary, Purge air from heating system, Check for water circulation (direction, pump, valves), Check water pressure, Check sensors are operating correctly, Check sensors have been correctly fitted, Check cleanliness of heat exchanger</td>
</tr>
<tr>
<td>E09</td>
<td>Return temperature too high</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note corresponding troubleshooting charts for further information (CHART xxx)
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
<th>Probable Causes</th>
<th>Checking/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>E10, E11</td>
<td>Temperature difference between the supply and return temperatures too great</td>
<td>Sensor fault</td>
<td>Replace the sensor if necessary Purge the air in the heating system Check for water circulation (direction, pump, valves) Check that the sensors are operating correctly Check the cleanliness of the heat exchanger Check that the heating pump is operating correctly (CHART 4)</td>
</tr>
<tr>
<td>E12</td>
<td>Temperature of heat exchanger is above the normal range (high-limit thermostat Safety Thermostat)</td>
<td>Bad connection Sensor fault</td>
<td>Check the wiring Replace the sensor if necessary Purge the air in the heating system Check for water circulation (direction, pump, valves) Check that the sensors are operating correctly Check the cleanliness of the heat exchanger Check that parameter P35 has been set correctly (CHART 3)</td>
</tr>
<tr>
<td>E14</td>
<td>5 burner start-up failures</td>
<td>No ignition</td>
<td>Check spark generator wiring Check the ionization/ignition electrode Check the condition of the burner Check the grounding Defective control SU PCB (CHART 5)</td>
</tr>
<tr>
<td>E14</td>
<td>Presence of spark but no flame formation</td>
<td>Purge the gas supply to remove air</td>
<td>Check the operation and setting of the gas valve Check that the air inlet and exhaust flue are not blocked Check the wiring on the gas valve Defective control SU PCB (CHART 5)</td>
</tr>
<tr>
<td>E14</td>
<td>Presence of the flame but insufficient ionization (<3 μA)</td>
<td>Check that the gas valve is fully opened</td>
<td>Check the ionization/ignition electrode Check the grounding Check the wiring on the ionization/ignition electrode (CHART 5)</td>
</tr>
<tr>
<td>E16</td>
<td>False flame signal</td>
<td>Ionization current present when there should not be a flame Ignition transformer defective Gas valve defective The burner remains very hot: CO too high</td>
<td>Check the ionization/ignition electrode Check the gas valve and replace if necessary Recalibrate the CO2 (CHART 2)</td>
</tr>
<tr>
<td>E17</td>
<td>Problem on SU PCB</td>
<td>Bad connection</td>
<td>Check the wiring Inspect the SU PCB and replace it if need be</td>
</tr>
<tr>
<td>E34</td>
<td>Fan fault</td>
<td>Bad connection</td>
<td>Replace Fan if necessary Check for adequate draw on the flue connection (CHART 7)</td>
</tr>
<tr>
<td>E35</td>
<td>Supply and return reversed</td>
<td>Bad connection Sensor fault</td>
<td>Replace the sensor if necessary Check for water circulation (direction, pump, valves) Check that the sensors are operating correctly Check that the sensors have been correctly fitted (CHART 4)</td>
</tr>
<tr>
<td>E36</td>
<td>Flame loss</td>
<td>No ionization current</td>
<td>Purge the gas supply to remove air Check that the gas valve is fully opened Check the supply pressure Check the operation and setting of the gas valve Check that the air inlet and exhaust flue are not blocked Check that there is no recirculation of flue gases (CHART 6)</td>
</tr>
</tbody>
</table>
Error Code Table

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
<th>Probable Causes</th>
<th>Checking/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>E37</td>
<td>Communication error with SU PCB</td>
<td>Bad connection</td>
<td>Check whether the SU PCB has been correctly fitted in connector on PCU PCB</td>
</tr>
<tr>
<td>E38</td>
<td>Communication error with SCU PCB</td>
<td>Bad connection</td>
<td>Check the wiring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective SCU PCB</td>
<td>Replace SCU PCB</td>
</tr>
<tr>
<td>E39</td>
<td>Shutdown input in locked-out mode</td>
<td>Bad connection</td>
<td>Check the wiring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External problem</td>
<td>Find external problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parameter incorrectly set</td>
<td>Check the parameters</td>
</tr>
<tr>
<td>E40</td>
<td>HRU unit test error</td>
<td>Bad connection</td>
<td>Check the wiring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External problem</td>
<td>Find external problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parameter incorrectly set</td>
<td>Check the parameters</td>
</tr>
<tr>
<td>E41</td>
<td>No water temperature change during deaeration/</td>
<td>Bad connection</td>
<td>Check the sensor connection</td>
</tr>
<tr>
<td></td>
<td>air purge</td>
<td>Supply/Return sensor damaged</td>
<td>Replace sensor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No water circulation</td>
<td>Check the pump connection</td>
</tr>
<tr>
<td>E42</td>
<td>Low water cutoff</td>
<td>Bad connection</td>
<td>Check the wiring</td>
</tr>
<tr>
<td></td>
<td>disconnected or water pressure too low</td>
<td>Water pressure low</td>
<td>Refill the system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check for leaks</td>
</tr>
<tr>
<td>E43</td>
<td>No water temperature change during boiler</td>
<td>Bad connection</td>
<td>Check the sensor connection</td>
</tr>
<tr>
<td></td>
<td>operation (burner on)</td>
<td>Supply/Return sensor damaged</td>
<td>Replace the sensor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No water circulation</td>
<td>Check the pump connection</td>
</tr>
<tr>
<td>E44</td>
<td>Difference between supply/return temperature</td>
<td>Bad connection</td>
<td>Check sensor connection</td>
</tr>
<tr>
<td></td>
<td>too high</td>
<td>Supply/Return sensor damaged</td>
<td>Replace sensor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No water circulation</td>
<td>Check pump connection</td>
</tr>
</tbody>
</table>

13.2 Shutdowns and Lock-outs

Blockage

If a blockage condition continues to exist after several start up attempts, boiler will switch into lock-out (fault) mode. The boiler can only start operating again once cause(s) of the lock-out have been rectified and after pressing \(<\) button.

Lock-out Mode

A temporary lock-out caused by an unusual occurrence in the boiler’s operation. e.g. Display gives code of blocked flue (code St9). Boiler control will try to re-start several times. Boiler will start up again after blocking condition(s) have been eliminated.

Shutdown codes can be read out as follows:

- Press the two buttons \(<\) simultaneously.
- Confirm by pressing \(<\) button. "St" is displayed, alternating with the shutdown code "9".
- Press the \((+)\) button. "Su" appears on the screen.

Boiler will start again automatically when reason for blocking has been removed.
Shutdown Code Table

<table>
<thead>
<tr>
<th>Shutdown Code</th>
<th>Description</th>
<th>Probable Causes</th>
<th>Checking/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su:0</td>
<td>Parameter error</td>
<td>Parameter error on the PSU PCB</td>
<td>Reset df and dU Restore parameters</td>
</tr>
<tr>
<td>Su:1</td>
<td>Maximum supply temperature exceeded</td>
<td>Non-existent or insufficient circulation / sensor error</td>
<td>Check the circulation (direction, pump, valves) Reasons for the heat demand</td>
</tr>
<tr>
<td>Su:2</td>
<td>Maximum increase of the supply temperature has been exceeded</td>
<td>Non-existent or insufficient water circulation / sensor error</td>
<td>Check the circulation (direction, pump, valves) Check the water pressure Check sensors are operating correctly Check sensor has been correctly fitted Check cleanliness of heat exchanger</td>
</tr>
<tr>
<td>Su:7</td>
<td>Max difference between T. supply/return exceeded</td>
<td>Non-existent or insufficient circulation / sensor error</td>
<td>Check the circulation (direction, pump, valves) Check the water pressure Check the sensors are operating correctly Check that the sensor has been correctly fitted Check the cleanliness of the heat exchanger</td>
</tr>
<tr>
<td>Su:8</td>
<td>No release signal</td>
<td>External cause Parameter error</td>
<td>Correct the external cause Check the parameters Check the wiring</td>
</tr>
<tr>
<td>Su:9</td>
<td>Line and neutral of power supply are mixed up (if P43=1)</td>
<td>Power supply incorrectly wired Floating or 2 phase network</td>
<td>Line and neutral mixed up Set parameter p43 to 0</td>
</tr>
<tr>
<td>Su:10</td>
<td>Shutdown input is open</td>
<td>External cause Parameter error</td>
<td>Correct the external cause Check the parameters Check the wiring</td>
</tr>
<tr>
<td>Su:11</td>
<td>Shutdown input active or frost protection active</td>
<td>External cause Parameter error</td>
<td>Correct the external cause Check the parameters Check the wiring</td>
</tr>
<tr>
<td>Su:13</td>
<td>Communication error with the SCU PCB</td>
<td>Bad connection with BUS SCU PCB not installed in boiler</td>
<td>Check the wiring Carry out automatic detection to find aux. PCB’s</td>
</tr>
<tr>
<td>Su:15</td>
<td>Gas pressure too low</td>
<td>Non-existent or insufficient gas Pressure. Incorrect setting of the Gps gas pressure switch on SCU PCB</td>
<td>Check that the gas valve is fully opened Check the supply pressure Check whether the Gps gas pressure control system has been correctly fitted Replace the Gps gas pressure control system if need be</td>
</tr>
<tr>
<td>Su:16 (1)</td>
<td>Configuration fault or SU PCB not recognized</td>
<td>Wrong SU PCB for this boiler</td>
<td>Replace the SU PCB</td>
</tr>
<tr>
<td>Su:17 (1)</td>
<td>Configuration fault or default parameter table incorrect</td>
<td>Parameter dF-dU error on the PSU PCB</td>
<td>Reset df and dU Restore parameters</td>
</tr>
<tr>
<td>Su:18 (1)</td>
<td>Configuration fault or PSU PCB not recognized</td>
<td>Wrong PSU PCB for this boiler</td>
<td>Replace the PSU PCB</td>
</tr>
<tr>
<td>Su:19 (1)</td>
<td>Configuration fault or parameters “df-du” unknown</td>
<td>---</td>
<td>Reset df and dU Restore parameters</td>
</tr>
</tbody>
</table>
Shutdown Code Table

<table>
<thead>
<tr>
<th>Shutdown Code</th>
<th>Description</th>
<th>Probable Causes</th>
<th>Checking/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su:20 (1)</td>
<td>Identification running</td>
<td>---</td>
<td>No action required</td>
</tr>
<tr>
<td>Su:21</td>
<td>Communication error with SU PCB</td>
<td>Bad connection</td>
<td>Check whether SU PCB has been correctly fitted in the connector on SU PCB</td>
</tr>
<tr>
<td>Su:22</td>
<td>No flame during operation</td>
<td>No ionization current</td>
<td>Purge gas supply to remove air, Check gas valve is fully opened, Check supply pressure, Check operation and setting of gas valve, Check air inlet and exhaust are not blocked, Check there is no recirculation of combustion gases</td>
</tr>
<tr>
<td>Su:25 (1)</td>
<td>Internal error on the SU-PCb</td>
<td>---</td>
<td>Replace the SU PCB</td>
</tr>
<tr>
<td>Su:29 (2)</td>
<td>tFG sensor above maximum setpoint</td>
<td>Non-existent or insufficient water circulation / sensor error</td>
<td>Replace flue high limit, Check circulation (direction, pump, valves), Check water pressure, Check sensors are operating correctly, Check sensor has been correctly fitted, Check cleanliness of heat exchanger</td>
</tr>
<tr>
<td>Su:30 (2)</td>
<td>No tFG sensor connected/shorted Boiler stop</td>
<td>Flue high limit disconnected / Sensor error</td>
<td>Replace flue high limit.</td>
</tr>
<tr>
<td>Su:33</td>
<td>After 5 times tF>tF Max: controlled stop</td>
<td>Non-existent or insufficient circulation / sensor error</td>
<td>Replace supply sensor, Check circulation (direction, pump, valves), Check water pressure, Check sensors are operating correctly, Check sensor has been correctly fitted, Check cleanliness of heat exchanger</td>
</tr>
<tr>
<td>Su:34 (2)</td>
<td>After 5 times tFG>tfmax: controlled stop</td>
<td>Non-existent or insufficient circulation / sensor error</td>
<td>Replace flue high limit, Check circulation (direction, pump, valves), Check water pressure, Check sensors are operating correctly, Check sensor has been correctly fitted, Check cleanliness of heat exchanger</td>
</tr>
<tr>
<td>Su:35</td>
<td>Insufficient gradient on T1(supply) or T2(return) after burner starts</td>
<td>Non-existent or insufficient circulation / sensor error</td>
<td>Check circulation (direction, pump, valves), Check water pressure, Check sensors are operating correctly, Check sensor has been correctly fitted, Check cleanliness of heat exchanger</td>
</tr>
</tbody>
</table>

(1) These lock-outs are not stored in fault memory
(2) tFG : flue gas sensor
13.3 Error History
Boiler control is equipped with error memory which, records last 16 errors. In addition to storing error codes, the following data is also saved:

- Number of times that the error occurred: \((n:xx)\).
- Boiler operating mode selected \((St:xx)\).
- The supply temperature \((t1:xx)\) and the return temperature \((t2:xx)\) when the error occurred.

To view the error history, enter access code 0012.

13.4 Error History Readout

- Press two \(\bigtriangleup\) buttons simultaneously and then (+) button until the \(\bigtriangleup\) symbol flashes on the menu bar.
- Select the installers menu using \(\bigtriangleup\) button. "CODE" appears on the display.
- Use (-) or (+) button to input installer code 0012.
- Press \(\bigtriangleup\) button. "Er:xx" appears on the display.
- The fault list can be displayed by pressing (-) or (+) button.
- Confirm using \(\bigtriangleup\) button. "Er:xx" is displayed with "xx" flashing = Last error which occurred, for example "2".
- Use (-) or (+) buttons to scroll through faults.
- Press \(\bigtriangleup\) button to display details of faults or shutdowns.
- Press (-) or (+) buttons to view the following information:
 \(n:1\) = Number of times that the error occurred.
 \(hr\) = The number of operating hours.
 \(St\) = State.
 \(Su\) = Sub-status.
 \(t1\) = Supply temperature \(^\circ F/\circ C\).
 \(t2\) = Return temperature \(^\circ F/\circ C\). \(t3\) = DHW tank temperature \(^\circ F/\circ C\).
 \(t4\) = Outdoor temperature \(^\circ F/\circ C\) (Only with an outdoor temperature sensor).
 \(t5\) = Solar panel temperature \(^\circ F/\circ C\). \(t6\) = Flue gas temperature \(^\circ F/\circ C\).
 \(Sp\) = Internal set point \(^\circ F/\circ C\).
 \(fl\) = Ionization current (μA).
 \(nf\) = Fan speed in rpm.
 \(Pr\) = Water pressure psi/bar.
 \(Po\) = Supplied relative heat output (%).
- Press \(\bigtriangleup\) button to interrupt display cycle. "Er:xx" is displayed with "xx" flashing = Last error which occurred.
- Use (-) or (+) button to scroll through faults.
- Press \(\bigtriangleup\) button to show fault list.
- Press \(\bigtriangleup\) button 2 times to exit error history.
13.5 Optional Sensors

1. Outdoor Air Sensor, if used.
 A. Boiler automatically recognizes sensor when used.
 B. See Chart 1 for sensor data. Sensor part number BD710487302V
 C. Locate outdoor sensor to protect against wind and direct sunlight. Mounting instructions provided with sensor.
 D. Maximum wire length is 100 ft (30m) for 22 ga. wire, or 150 ft (45m) for 18 ga. wire.

2. Sensor for Indirect DHW Tank (Heating Only Boiler).
 A. See Chart 2 for sensor data.

CHART 1 - OUTDOOR AIR SENSOR DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.0</td>
<td>7,578</td>
<td>53.6</td>
<td>1,690</td>
</tr>
<tr>
<td>-2.2</td>
<td>7,193</td>
<td>55.4</td>
<td>1,621</td>
</tr>
<tr>
<td>-0.4</td>
<td>6,831</td>
<td>57.2</td>
<td>1,555</td>
</tr>
<tr>
<td>1.4</td>
<td>6,489</td>
<td>59.0</td>
<td>1,492</td>
</tr>
<tr>
<td>3.2</td>
<td>6,166</td>
<td>60.8</td>
<td>1,433</td>
</tr>
<tr>
<td>5.0</td>
<td>5,861</td>
<td>62.6</td>
<td>1,375</td>
</tr>
<tr>
<td>6.8</td>
<td>5,574</td>
<td>64.4</td>
<td>1,321</td>
</tr>
<tr>
<td>8.6</td>
<td>5,303</td>
<td>66.2</td>
<td>1,268</td>
</tr>
<tr>
<td>10.4</td>
<td>5,046</td>
<td>68.0</td>
<td>1,218</td>
</tr>
<tr>
<td>12.2</td>
<td>4,804</td>
<td>69.8</td>
<td>1,170</td>
</tr>
<tr>
<td>14.0</td>
<td>4,574</td>
<td>71.6</td>
<td>1,125</td>
</tr>
<tr>
<td>15.8</td>
<td>4,358</td>
<td>73.4</td>
<td>1,081</td>
</tr>
<tr>
<td>17.6</td>
<td>4,152</td>
<td>75.2</td>
<td>1,040</td>
</tr>
<tr>
<td>19.4</td>
<td>3,958</td>
<td>77.0</td>
<td>1,000</td>
</tr>
<tr>
<td>21.2</td>
<td>3,774</td>
<td>78.8</td>
<td>962</td>
</tr>
<tr>
<td>23.0</td>
<td>3,600</td>
<td>80.6</td>
<td>926</td>
</tr>
<tr>
<td>24.8</td>
<td>3,435</td>
<td>82.4</td>
<td>892</td>
</tr>
<tr>
<td>26.6</td>
<td>3,279</td>
<td>84.2</td>
<td>858</td>
</tr>
<tr>
<td>28.4</td>
<td>3,131</td>
<td>86.0</td>
<td>827</td>
</tr>
<tr>
<td>30.2</td>
<td>2,990</td>
<td>87.8</td>
<td>796</td>
</tr>
<tr>
<td>32.0</td>
<td>2,857</td>
<td>89.6</td>
<td>767</td>
</tr>
<tr>
<td>33.8</td>
<td>2,730</td>
<td>91.4</td>
<td>740</td>
</tr>
<tr>
<td>35.6</td>
<td>2,610</td>
<td>93.2</td>
<td>713</td>
</tr>
<tr>
<td>37.4</td>
<td>2,496</td>
<td>95.0</td>
<td>687</td>
</tr>
<tr>
<td>39.2</td>
<td>2,387</td>
<td>96.8</td>
<td>663</td>
</tr>
<tr>
<td>41.0</td>
<td>2,284</td>
<td>98.6</td>
<td>640</td>
</tr>
<tr>
<td>42.8</td>
<td>2,186</td>
<td>100.4</td>
<td>617</td>
</tr>
<tr>
<td>44.6</td>
<td>2,093</td>
<td>102.2</td>
<td>595</td>
</tr>
<tr>
<td>46.4</td>
<td>2,004</td>
<td>104.0</td>
<td>575</td>
</tr>
<tr>
<td>48.2</td>
<td>1,920</td>
<td>102.2</td>
<td>595</td>
</tr>
<tr>
<td>50.0</td>
<td>1,840</td>
<td>104.0</td>
<td>575</td>
</tr>
<tr>
<td>51.8</td>
<td>1,763</td>
<td>106.0</td>
<td>556</td>
</tr>
</tbody>
</table>

CHART 2 - INDIRECT TANK SENSOR DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32.0</td>
<td>32,505</td>
<td>86.0</td>
<td>8,060</td>
</tr>
<tr>
<td>33.8</td>
<td>30,898</td>
<td>87.8</td>
<td>7,726</td>
</tr>
<tr>
<td>35.6</td>
<td>29,381</td>
<td>89.6</td>
<td>7,407</td>
</tr>
<tr>
<td>37.4</td>
<td>27,946</td>
<td>91.4</td>
<td>7,103</td>
</tr>
<tr>
<td>39.2</td>
<td>26,590</td>
<td>93.2</td>
<td>6,813</td>
</tr>
<tr>
<td>41.0</td>
<td>25,308</td>
<td>95.0</td>
<td>6,537</td>
</tr>
<tr>
<td>42.8</td>
<td>24,094</td>
<td>96.8</td>
<td>6,273</td>
</tr>
<tr>
<td>44.6</td>
<td>22,946</td>
<td>98.6</td>
<td>6,021</td>
</tr>
<tr>
<td>46.4</td>
<td>21,859</td>
<td>100.4</td>
<td>5,781</td>
</tr>
<tr>
<td>48.2</td>
<td>20,829</td>
<td>102.2</td>
<td>5,551</td>
</tr>
<tr>
<td>50.0</td>
<td>19,854</td>
<td>104.0</td>
<td>5,332</td>
</tr>
<tr>
<td>51.8</td>
<td>18,930</td>
<td>105.8</td>
<td>5,123</td>
</tr>
<tr>
<td>53.6</td>
<td>18,054</td>
<td>107.6</td>
<td>4,923</td>
</tr>
<tr>
<td>55.4</td>
<td>17,223</td>
<td>109.4</td>
<td>4,732</td>
</tr>
<tr>
<td>57.2</td>
<td>16,436</td>
<td>111.2</td>
<td>4,549</td>
</tr>
<tr>
<td>59.0</td>
<td>15,689</td>
<td>113.0</td>
<td>4,374</td>
</tr>
<tr>
<td>60.8</td>
<td>14,980</td>
<td>114.8</td>
<td>4,207</td>
</tr>
<tr>
<td>62.6</td>
<td>14,306</td>
<td>116.6</td>
<td>4,047</td>
</tr>
<tr>
<td>64.4</td>
<td>13,667</td>
<td>118.4</td>
<td>3,894</td>
</tr>
<tr>
<td>66.2</td>
<td>13,060</td>
<td>120.2</td>
<td>3,748</td>
</tr>
<tr>
<td>68.0</td>
<td>12,483</td>
<td>122.0</td>
<td>3,608</td>
</tr>
<tr>
<td>69.8</td>
<td>11,935</td>
<td>123.8</td>
<td>3,473</td>
</tr>
<tr>
<td>71.6</td>
<td>11,414</td>
<td>125.6</td>
<td>3,345</td>
</tr>
<tr>
<td>73.4</td>
<td>10,919</td>
<td>127.4</td>
<td>3,222</td>
</tr>
<tr>
<td>75.2</td>
<td>10,447</td>
<td>129.2</td>
<td>3,104</td>
</tr>
<tr>
<td>77.0</td>
<td>9,999</td>
<td>131.0</td>
<td>2,991</td>
</tr>
<tr>
<td>78.8</td>
<td>9,572</td>
<td>132.8</td>
<td>2,882</td>
</tr>
<tr>
<td>80.6</td>
<td>9,166</td>
<td>134.6</td>
<td>2,778</td>
</tr>
<tr>
<td>82.4</td>
<td>8,779</td>
<td>136.4</td>
<td>2,679</td>
</tr>
<tr>
<td>84.2</td>
<td>8,411</td>
<td>138.2</td>
<td>2,583</td>
</tr>
</tbody>
</table>
Troubleshooting Chart 1

- **E02** - Supply Sensor Short
- **E03** - Supply Sensor Open
- **E04** - Heat Exchanger Temp.
- **E05** - Heat Exchanger Temp.
- **E06** - Return Sensor Short
- **E07** - Return Sensor Open
- **E08** - Low Return Temp.
- **E09** - High Return Temp.

Locate Appropriate Sensor

See Figure 1 (page) and Figure (Wire Diagram)

Trace wire leads. Are all connections tight and wires undamaged?

- **NO**
- **YES**

Repair wire and/or fix connection.

- **YES**
- **NO**

Check continuity across sensor. OK?

- **YES**
- **NO**

Replace Sensor

Check sensor element is properly installed in pipe.

- **YES**
- **NO**

Re-Install Sensor Properly

Check sensor resistance and compare to temperature resistance curve (Figure 13-1 page 87. (Remove sensor if needed). Ok?

- **YES**
- **NO**

Replace Control Board

Replace Sensor
Troubleshooting Chart 2

E16 - False Flame Signal

Turn Off All Heat Calls

Inspect Burner through sight glass. Is flame present?

NO

Replace Flame Sense

YES

Replace Gas Valve

Initiate heat call. Check CO₂ at high fire is 9.1-9.5%

In Range

Out of Range

Adjust Gas Mixture See Section 9. Re-check. E-16 still present?

YES

Condition Corrected

NO

Replace Flame Sense

P/N 240011664, Rev. D [06/30/2017]
Troubleshooting Chart 3

E12 - High Temperature

Is High Limit Jumper Plug in Place?

- YES
- NO

Is external High Limit Switch off?

- YES
- NO or N/A

Reset Switch

Check switches 4 and 5 in wire diagram. Both electrical connected and continuity?

- YES
- NO

Does heat exchanger switch 6 (in wire diagram) have continuity?

- YES
- NO

Check Boiler Pump OK?

- YES
- NO

Water Circulation Adequate?

- YES
- NO

Purge air in system

Repair Piping

Replace Pump

Replace Heat Exchanger

Repair plug

Repair plug or replace switch
13 - TROUBLE SHOOTING

Troubleshooting Chart 4

E10, E11 - Temperature Difference Between Supply and Return Too Great

E35 - Supply and Return Sensors Reversed

Is return line warmer than supply line?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

Check water pressure. Is water pressure at least 15 psig?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

Are any water valves partially closed?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

Open all valves

Check wire harness against wiring diagram. Are Supply sensor wires green and Return Sensor wires red?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

Check wire plugs are securely connected to sensors.

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

Check both sensors are properly inserted into pipe lines.

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

Refer to temperature sensor chart.

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

Replace sensor

Replace control board

Error Code is accurate. Correct system piping.

Onboard pump operation properly?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

Possible air in system. De-aerate

Wire connections are reversed. Correct wiring connections.

Assure wire harness plugs are securely connected to sensors

Repair sensor insertion into pipe lines

Replace pump

Replace sensor

P/N 240011664, Rev. D [06/30/2017]
Troubleshooting Chart 5

E14 - Burner Start Up Failures

Is this a new boiler on first startup?

- YES
- NO

LP installation?

- YES
- NO

LP Conversion Kit installed?

- NO
- YES

Install Conversion Kit

Is the gas shutoff valve closed?

- NO
- YES

Open the gas shutoff valve

Check all wires including igniter and gas valve are connected and tight

- YES
- NO

Connect All Wires And Assure Secure Fit

Are ground wires attached and boiler properly grounded?

- YES
- NO

Provide Proper Ground

Has all air been purged from gas line?

- NO
- YES

Purge all air from gas line

Check gas inlet pressure at least equals rating plate requirements.

- NO
- YES

Check Gas Line For Obstructions

Press RESET for two (2) seconds and retry.
Is there a strong, consistent spark?

- NO
- YES

Remove igniter and inspect. Is there contamination?

- YES
- NO

Clean Or Replace Igniter

Does the boiler ignite?

- YES
- NO

Restart the boiler and place into high fire chimney sweep. Go to display and check flame current. Is there at least 3 mA?

- YES
- NO

Hold the igniter and retry ignition. Is there a spark?

- YES
- NO

Replace Spark Generator

Check Venting For Obstruction And Or Wind Effects

Remove burner and inspect. Any sign of damage to burner surface?

- NO
- YES

Replace Burner

Check interior of heat exchanger for debris or other signs of blockage

- YES
- NO

Clean Heat Exchanger

Clean Heat Exchanger

Replace Gas Valve
Troubleshooting Chart 6

E36 - Burner Flame Loss

LP Installation?
- YES
- NO

LP Conversion kit installed?
- NO
- YES

Install LP Conversion Kit

Is gas shutoff valve fully open?
- YES
- NO

Open Gas shutoff valve.

Check all wires including igniter and gas valve are connected and tight.
- YES
- NO

Check gas inlet pressure at least equals rating plate requirements
- YES
- NO

Check venting. Is exhaust gas recirculating to the air intake?
- NO
- YES

Remove igniter and inspect. Is there damage or contamination?
- YES
- NO

Clean or Replace Igniter

Refer to section 6 of IOM and correct vent terminations

Check interior of heat exchanger for debris or signs of blockage
- NO
- YES

Replace Spark Generator

Replace Burner

Replace gas valve

Clean Heat Exchanger

Check venting for obstruction and/or wind effects
- YES
- NO

Clear Vent Obstruction
13 - TROUBLE SHOOTING

Troubleshooting Chart 7

E34 - Fan Fault

Check all wires including blower valve are connected and tight

YES NO

Check venting for obstruction (both inlet and exhaust)

NO YES

Replace Blower Assembly Clear Vent Obstruction

Connect all wires and assure secure fit

Troubleshooting Chart 8

E39 - Shutdown Input In Locked Out Mode

Check BL connection on control board terminal strip. Is this function being utilized?

YES NO

Are the wire connections secure?

NO YES

Secure wire connections

Check external accessories are correct

YES NO

Repair/Replace External Accessory Item As Required

Replace Control Board

Check external accessories are correct

YES NO

Change Installation Parameters As Required

Is factory installed jumper securely in place?

YES NO

Install jumper securely in place
Troubleshooting Chart 9

E40 - HRU/URC Unit test error

- **Is HRU terminal being used on the auxiliary SCU board (see section 8)?**
 - **NO**
 - **YES**

- **Is wiring connection to HRU terminal secure?**
 - **NO**
 - **YES**

 - **Fix Wiring Connection**
 - **Set P42 to 1**
 - **OK**
 - **Not OK**
 - **Done**

- **Is Parameter P42 set to 1?**
 - **NO**
 - **YES**

 - **Fix Wiring Connection**
 - **Is P42 parameter set to 0?**
 - **YES**
 - **NO**
 - **Replace SCU board**
 - **Replace Main Control Board**
 - **Done**

- **Is HRU accessory operating properly?**
 - **NO**
 - **YES**

 - **Correct HRU Accessory**
Note: This error code refers to the onboard low water pressure switch, not any field installed external low water cutoff device.

Troubleshooting Chart 10

E42 - Low Water Pressure

- Check system water pressure with tridicator or other device. Is water pressure at least 15 psig?
 - **YES**
 - **NO**

 - Check wire harness connections are secure
 - **OK**
 - **NOT OK**

 - Is low water pressure sensor (item 12 in wiring diagram) securely installed to block?
 - **Yes**
 - **NO**

 - Correct Installation
 - Replace Sensor.
 - **OK**
 - **NOT OK**

 - Correct Installation
 - Replace Control Board

 - Secure Wire Harness Connections

 - The error code is accurate. Correct water pressure and/or correct system leaks.

Done

P/N 240011664, Rev. D [06/30/2017]
Troubleshooting Chart 11

E43 - No Water Temperature Difference During Operation

Start Boiler. Is supply line warmer than return line?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

Onboard pump operating properly?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

Possible air in the system. De-aerate.

<table>
<thead>
<tr>
<th>NOT OK</th>
<th>OK</th>
</tr>
</thead>
</table>

Assure wire harness plugs are securely connected to sensors.

<table>
<thead>
<tr>
<th>NO</th>
<th>YES</th>
</tr>
</thead>
</table>

Check both sensors are properly inserted into pipe lines.

<table>
<thead>
<tr>
<th>NO</th>
<th>YES</th>
</tr>
</thead>
</table>

Check wire plugs are securely connected to temperature sensors.

<table>
<thead>
<tr>
<th>NO</th>
<th>YES</th>
</tr>
</thead>
</table>

Replace Pump

Reference to Temperature Sensor Chart (both sensors)

<table>
<thead>
<tr>
<th>OK</th>
<th>Not OK</th>
</tr>
</thead>
</table>

Repair Sensor Insertion Into Pipe Lines.

Replace Sensor

Replace Control Board

Done
Figure 13-1 Temperature-Resistance Chart for Supply and Return Temperature Sensors

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>T (°F)</th>
<th>R (Ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>-40</td>
<td>309396</td>
</tr>
<tr>
<td>-30</td>
<td>-22</td>
<td>171840</td>
</tr>
<tr>
<td>-20</td>
<td>-4</td>
<td>98932</td>
</tr>
<tr>
<td>-10</td>
<td>14</td>
<td>58879</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>36129</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>22804</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>14773</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
<td>12000</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
<td>9804</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
<td>6652</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
<td>4607</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
<td>3252</td>
</tr>
<tr>
<td>70</td>
<td>158</td>
<td>2337</td>
</tr>
<tr>
<td>80</td>
<td>176</td>
<td>1707</td>
</tr>
<tr>
<td>90</td>
<td>194</td>
<td>1266</td>
</tr>
<tr>
<td>100</td>
<td>212</td>
<td>952</td>
</tr>
<tr>
<td>110</td>
<td>230</td>
<td>726</td>
</tr>
<tr>
<td>120</td>
<td>248</td>
<td>560</td>
</tr>
<tr>
<td>130</td>
<td>266</td>
<td>438</td>
</tr>
<tr>
<td>140</td>
<td>284</td>
<td>345</td>
</tr>
<tr>
<td>150</td>
<td>302</td>
<td>275</td>
</tr>
</tbody>
</table>
• **APPLIANCE** - Device to convert gas into energy; term includes any component, control, wiring, piping or tubing required to be part of the device.

• **ANSI** - American National Standards Institute, Inc. oversees creation and maintenance of voluntary consensus standards, including ANSI Z21.13/CSA 4.9: Gas-Fired Low Pressure Steam and Hot Water Boilers.

• **ASTM** - American Society for Testing and Materials. ASTM International is one of largest voluntary standards development organizations in world trusted source for technical standards for materials, products, systems, and services. Known for their high technical quality and market relevancy, ASTM International standards have important role in information infrastructure that guides design, manufacturing and trade in the global economy.

• **AUTHORITY HAVING JURISDICTION** - Individual or organization adopting and enforcing codes, rules, and by-laws governing various concerns of community. Commonly referred to as “final authority” for any matters relating to LIFE SAFETY and BUILDING CONSTRUCTION within a community.

• **BOILER** - Appliance intended to supply hot liquid for space-heating, processing or power purposes.

• **Btu** - Abbreviation for British Thermal Unit. Quantity of heat required to raise temperature of 1 pound of water 1°F.

• **BURNER** - Device for final conveyance of gas or mixture of gas and air, to combustion zone.

• **CALIBRATE** - Make fine adjustments or divide into marked intervals for optimal measuring.

• **COMBUSTION** - Rapid oxidation of fuel gases accompanied by production of heat or heat and light. Complete combustion of fuel is possible only in presence of adequate supply of Oxygen.

• **COMBUSTIBLE MATERIAL** - Materials made of or surfaced with wood, compressed paper, plant fibers, or other materials capable of being ignited and burned. Such material shall be considered combustible even though flame-proofed, fire-retardant treated, or plastered.

• **COMBUSTION AIR** - Air that is drawn into an appliance to mix with fuel and support combustion.

• **CONDENSATE** - Liquid separated from flue gas due to reduction in temperature.

• **DIRECT VENT BOILER** - Boiler constructed and installed so all combustion air is derived directly from outdoors and all vent gases are discharged to outdoors.

• **DOMESTIC** - Relating to household usage as opposed to commercial usage.

• **DOMESTIC WATER** - Potable drinking water - tap water.

• **DRAFT** - Pressure difference causes gases or air to flow through a chimney, vent, flue or appliance.

• **FLA** - Full load amps.

• **FLUE** - Enclosed passageway for conveying combustion gases.

• **FLUE GASES** - Products of combustion plus excess air in appliance flues or heat exchanger.

• **GAS SUPPLIER** - Party that sells commodity of Natural Gas (Gas A) or LPG (Gas E).

• **HIGH-VOLTAGE** - Circuit involving potential of not more than 600 volts and having circuit characteristics in excess of those of low-voltage circuit.

• **IGNITER** - Device utilizing electrical energy to ignite gas at main burner.

• **LEAK CHECK** - Operation performed on gas piping system to verify system does not leak.

• **LICENSED QUALIFIED INSTALLER / SERVICE TECHNICIAN** - any individual, firm, corporation or company that either directly or through a representative is engaged in the installation, replacement, repair or servicing of gas piping, venting systems, appliances, components, accessories, or equipment, and whose representative is experienced and trained, in such work and has complied with the requirements of the authority having jurisdiction.

• **LOW WATER CUTOFF** - Device constructed to automatically cut off fuel supply when surface of water in boiler falls to lowest safe water level.

• **LOW-VOLTAGE** - Circuit involving potential of not more than 30 volts.

• **METRIC GAS METERS**

 Natural Gas

 \[MBH = \frac{127,116 \times \text{cu meters}}{\text{Seconds}} \]

 For example: Gas Meter measures 0.1 cubic Meters in 100 seconds

 \[MBH = \frac{127,116 \times 0.1}{100} = 127 \text{ MBH} \]

 Propane Gas (LP)

 \[MBH = \frac{383,482 \times \text{cu meters}}{\text{Seconds}} \]
• **PRESSURE TEST** - Operation performed to verify gas tight integrity of gas piping following its installation or modification.

• **PURGE** - To free gas conduit of air or gas, or mixture of gas and air.

• **PURGE TIME** - Period of time intended to allow for dissipation of any unburned gas or residual products of combustion.

• **QUALIFIED AGENCY** - Any individual, firm, corporation, or company engaged in and responsible for:

 - Installation, testing, or replacement of gas piping, or connection, installation, testing, repair or servicing of appliances and equipment.
 - Experienced in such work.
 - Familiar with all precautions required.
 - Complies with all requirements of authority having jurisdiction.

• **SAFETY RELIEF VALVE** - Valve designed to relieve pressure in hot water supply system when pressure exceeds pressure capability of equipment.

• **SAFETY SHUTOFF DEVICE** - Device that will shut off gas supply to controlled burner in event source of ignition fails.

• **SEDIMENT TRAP** - Gas piping arrangement designed to collect any liquid or solid contaminant before reaching gas valve.

• **SERVICE** - Supply, installation, or maintenance of goods carried out by a Qualified Installer / Service Technician.

• **TWO PIPE SYSTEM** - Type of venting that allows for exhaust flue and intake air piping to be separated from each other. Fresh air may be drawn in at a different area from where flue terminal is located.

• **VENT** - Passageway used to convey flue gases from appliance vent connector to outdoors.

• **VENTING SYSTEM** - Continuous open passageway from of appliance vent connector to outdoors for purpose of removing flue or vent gases.