DCB-100
DCC-115
DCB-125
DCC-150
DCB-165
DCC-205

CONDENSING WALL MOUNTED GAS FIRED BOILER
CONTENTS:

INSTALLATION, OPERATION, AND MAINTENANCE MANUAL (240013360)

APPLICATION GUIDE (240011430)

COMMISSIONING GUIDE (240011376)

REQUIRED INSPECTION SPECIAL (240011561)

BACK COVER
CONDENSING WALL MOUNTED
GAS FIRED

INSTALLATION, OPERATION & MAINTENANCE MANUAL

Models:
COMBI
DCC-115, DCC-150
DCC-205
HEATING ONLY
DCB-100, DCB-125, DCB-165
<table>
<thead>
<tr>
<th>Fully Assembled Boiler</th>
<th>Metal Wall Bracket w/ 4 ea Wall Screws and Plugs</th>
<th>30 PSI Safety Relief Valve</th>
<th>Temperature Pressure Gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Valve</td>
<td>*5 GPM Flow Restrictor 205 Combi Only</td>
<td>Used for Valve Connections</td>
<td>Document Package</td>
</tr>
<tr>
<td>*Manifold</td>
<td>*Manifold 165 Heat-Only</td>
<td>* 2 ea DHW Connections (DHW connection qty. vary between models)</td>
<td>Template</td>
</tr>
</tbody>
</table>

* Verify proper model size before use.

For Parts lists see manual 240013361 included with your boiler literature package.
Verify Contents Received .. 2
Table Of Contents .. 3
Physical Data ... 4
1 - Important Information 6
 2 - Introduction .. 7
 2.3 Requirements For Commonwealth Of Massachusetts: .. 7
 2.4 Use Of Carbon Monoxide Monitor ... 7
 2.5 Designated Use .. 7
 2.6 The Unit Must Not .. 7
 2.7 Operational Features ... 7
3 - Component Listing ... 11
4 - Locating Boiler .. 14
 4.1 Boiler Location Considerations ... 14
 4.2 Clearances ... 15
 4.3 Wall Mounting ... 16
5 - Combustion Air And Vent Piping 17
 5.1 General ... 17
 5.2 Removal Of Existing Boiler From Common Vent System 18
 5.3 Definitions ... 18
 5.4 Approved Venting Materials ... 19
 5.5 Vent Termination ... 19
 5.6 Coaxial Venting Instructions .. 21
 5.7 Coaxial Vent Screw Placement .. 22
 5.8 Twin Pipe Systems .. 23
 5.9 Securing Twin Pipe Polypropylene Venting ... 24
 5.10 (3” / 80 Mm Only) Flexible Vent System .. 27
 5.11 Condensate Piping .. 29
6 - Hydronic Piping ... 30
 6.1 General ... 30
 6.2 Special Conditions .. 31
 6.3 Safety Relief Valve And Air Vent 31
 6.4 Trim Piping ... 32
 6.5 System Piping ... 32
 6.6 External Optional Low Water Cut Off 34
 6.7 Manufacturer Recommendation - Strainer ... 35
 6.8 Central Heating System .. 36
 6.9 Domestic Hot Water Mode .. 36
 6.10 Frost Protection Mode .. 36
 6.11 Pump Protection .. 36
7 - Gas Supply Piping .. 37
 7.1 General ... 37
 7.2 Gas Pipe Recommendations ... 38
 7.3 Leak Check Gas Piping ... 40
 7.4 Gas Orifice .. 40
8 - Electrical Connections 41
 8.1 General ... 41
 8.2 Install Room Thermostat ... 41
 8.3 Electrical Connections ... 41
 8.4 Access To Connection Block 42
 8.5 Main Supply Connection .. 42
 8.6 Install Room End Switch .. 43
 8.7 Optional Electrical Connections 43
 8.8 Indirect Storage Tank ... 45
 8.9 Management Of 0-10v Input 45
9 - Start Up Procedure .. 47
 9.1 Central Heating System Connections - Heat Only .. 47
 9.2 Central Heating System Connections - Combil 48
 9.3 System Start Up ... 49
 9.4 Fill Condensate Trap With Water 49
 9.5 Control Panel ... 50
 9.6 Prior To Commissioning ... 51
 9.7 Commissioning For The First Time 51
 9.8 Automatic Calibration Function 51
 9.9 Manual Calibration Function .. 52
 9.10 De-Aeration Function ... 52
 9.11 Commission Set Up (Gas) - Changing The Type Of Gas 52
9.12 Chimney Sweep Function 53
9.13 Combustion Adjustment Function (Co2%) 53
9.14 Check Firing Rate .. 53
9.15 Parameter Settings ... 54
9.16 Description Of Parameters: Factory Settings 55
9.17 Adjusting Maximum Heating Power 56
10 - Operating Instructions .. 57
 10.1 Testing For Gas Leaks And Purging The Gas Supply 57
 10.2 Boiler Operation .. 57
 10.3 Central Heating Mode ... 57
 10.4 Domestic Hot Water Mode ... 57
 10.5 Frost Protection .. 58
 10.6 Pump ... 58
 10.7 Low Water Pressure Sensor (Internal) 58
11 - General Maintenance And Cleaning 59
 11.1 Beginning Of Each Heating Season 59
 11.2 Maintenance And Routine Servicing 60
 11.3 Component Replacement And Cleaning 60
 11.4 Draining The Boiler .. 61
 11.5 Draining The Heating Circuit .. 61
 11.6 Hydraulic Unit (Dhw) ... 62
 11.7 Cleaning The Cold Water Filter 62
 11.8 Final Commissioning ... 62
 11.9 Final Assembly .. 62
 11.10 User Information .. 63
 11.11 Safety Flue Thermostat .. 63
 11.12 Flue Pressure Switch (125-150 Only) 63
 11.13 Replacement Parts .. 63
12 - Ratings And Capacities 64
 12.1 Ratings And Capacity .. 64
 12.2 Domestic Hot Water Specifications 64
 12.3 High Altitude Ratings ... 65
 12.4 High Altitude Chart .. 65
13 - Trouble Shooting ... 67
 13.1 Error Messages And Resetting The Boiler 67
 13.2 Anomalies Table For The Installer - Use This Table To Report The Anomaly Values .. 69
14 - Glossary .. 70
Appendix A - Wiring Diagrams 72-77
PHYSICAL DATA

Dimensions

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
<th>100 / 125</th>
<th>115 / 150</th>
<th>165 / 205</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Height</td>
<td>30" [763 mm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Width</td>
<td>17 ¾" [450 mm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Depth</td>
<td>13 ¾" [345 mm]</td>
<td>21 ¾" [571 mm]</td>
<td></td>
</tr>
</tbody>
</table>

DIMENSIONS

<table>
<thead>
<tr>
<th>Condensate Trap Connection</th>
<th>13/16" [21 mm] ID Hose</th>
<th>3/4" [19.1 mm] NPT</th>
</tr>
</thead>
</table>

E System Supply

| 3/4" [19.1 mm] | 1" [25.4 mm] |

F DHW Outlet (100 & 125 Optional)

<table>
<thead>
<tr>
<th>3/4" [19.1 mm] Copper Sweat</th>
<th>1/2" [15.9 mm] Copper Sweat</th>
<th>165-NA 205 - 3/4" [19.1 mm]</th>
</tr>
</thead>
</table>

G Gas Connection

| 3/4" [19.1 mm] |

H DHW (Cold Water) Inlet

<table>
<thead>
<tr>
<th>N/A</th>
<th>1/2" [15.9 mm] Copper Sweat</th>
<th>165 - N/A 205 - 3/4" [19.1 mm]</th>
</tr>
</thead>
</table>

I Boiler Return

| 3/4" [19.1 mm] Copper Sweat | 1" [25.4 mm] |

| Primary Water Content | 0.95 gal [3.60 L] | 1 gal [3.60 L] | 1¼ gal [4.73 L] |

SYSTEM

Central Heating (Sealed System)

<table>
<thead>
<tr>
<th>100 / 115 / 125 / 150 / 165 / 205</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Exchanger Max Allowable Working Pressure</td>
</tr>
<tr>
<td>Max System Pressure</td>
</tr>
<tr>
<td>Min System Pressure</td>
</tr>
<tr>
<td>Max System temperature</td>
</tr>
<tr>
<td>Pressure Relief Valve Setting</td>
</tr>
<tr>
<td>Expansion Tank Minimum Size (pre-charge press.)</td>
</tr>
<tr>
<td>Recommended System Pressure (cold)</td>
</tr>
</tbody>
</table>

Domestic Hot Water

<table>
<thead>
<tr>
<th>115</th>
<th>150</th>
<th>205</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Inlet Water Pressure</td>
<td>116 psi [8 bar]</td>
<td></td>
</tr>
<tr>
<td>Min Inlet Water Pressure</td>
<td>2.9 psi [0.2 bar]</td>
<td></td>
</tr>
<tr>
<td>Min DHW Flow Rate</td>
<td>0.55 gpm [2.50 L/min]</td>
<td></td>
</tr>
<tr>
<td>Max DHW Temperature</td>
<td>140°F [60°C]</td>
<td></td>
</tr>
<tr>
<td>DHW Water Content (Domestic Hot Water Flat Plate Content)</td>
<td>0.035 gal [0.13 L]</td>
<td>0.053 gal [0.23 L]</td>
</tr>
</tbody>
</table>

When boiler is operating at maximum operating temperature, providing heating with all heat emitters operating, pressure gauge should not indicate more than 26.11 psi / 1.80 bar. If reading exceeds this figure larger expansion tank is required.
1. Safety Information

Boiler installation shall be completed by qualified agency. See glossary for additional information.

⚠️ WARNING

Fire, explosion, asphyxiation and electrical shock hazard. Improper installation could result in death or serious injury. Read this manual and understand all requirements before beginning installation.

⚠️ WARNING

Do not tamper with or use this boiler for any purpose other than its intended use. Failure to follow these instructions could result in death or serious injury. Use only manufacturer recommended parts and accessories.

⚠️ CAUTION

Laceration, burn hazard. Metal edges and parts may have sharp edges and/or may be hot. Use appropriate personal protection equipment to include safety glasses and gloves when installing or servicing this boiler. Failure to follow these instructions could result in minor or moderate injury.

⚠️ WARNING

Fire, Explosion, Asphyxiation, Electrical shock hazard! Flooding will result in damages such as electrical problems, corrosion, inoperative parts, mold and other unforeseen issues which can occur over time. Any equipment determined by a professional as damaged by a flood, defined as excess of water or other liquid, shall be replaced. Failure to follow these directions will result in a Hazardous Situation.

Become familiar with symbols identifying potential hazards.

⚠️ DANGER

Indicates a hazardous situation which, if not avoided, WILL result in death or serious injury.

⚠️ WARNING

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

⚠️ CAUTION

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE

Used to address practices not related to personal injury.

FOR YOUR SAFETY READ BEFORE OPERATING

Hot Water Can Scald!

Water heated to temperature for clothes washing, dish washing and other sanitizing needs can scald and cause permanent injury.

Children, elderly, and infirmed or physically handicapped persons are more likely to be permanently injured by hot water. Never leave them unattended in bathtub or shower. Never allow small children to use a hot water tap or draw their own bath.

If anyone using hot water in the building fits the above description, or if state laws or local codes require certain water temperatures at hot water taps, you must take special precautions:

• Use lowest possible temperature setting.
• Install some type of tempering device, such as an automatic mixing valve, at hot water tap or water heater. Automatic mixing valve must be selected and installed according to manufacturer’s recommendations and instructions.
• Water passing out of drain valves may be extremely hot. To avoid injury:
 • Make sure all connections are tight.
 • Direct water flow away from any person.

<table>
<thead>
<tr>
<th>Water Temperature Setting</th>
<th>1st Degree Burn Exposure Time For An Adult</th>
<th>2nd and 3rd Degree Burn Exposure Time For An Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>120° F</td>
<td>1 minute</td>
<td>5 minutes</td>
</tr>
<tr>
<td>130° F</td>
<td>5 seconds</td>
<td>30 seconds</td>
</tr>
<tr>
<td>140° F</td>
<td>2 seconds</td>
<td>5 seconds</td>
</tr>
<tr>
<td>150° F</td>
<td>1 second</td>
<td>1.5 seconds</td>
</tr>
<tr>
<td>160° F</td>
<td>Instantaneous</td>
<td>0.5 seconds</td>
</tr>
</tbody>
</table>

Note: Warning for Infants, Children, and Elderly: Great care must be taken when exposing the aforementioned groups to warm or hot water as they can be badly burned in exposure times less than half of the time for an adult.
2 - INTRODUCTION

2.1 Installation shall conform to requirements of authority having jurisdiction or in absence of such requirements:

UNITED STATES
- National Electrical Code, NFPA 70.

2.2 Where required by authority having jurisdiction, installation shall conform to Standard for Controls and Safety Devices for Automatically Fired Boilers, ANSI/ASME CSD-1. Additional manual reset low water cutoff may be required.

2.3 Requirements for Commonwealth of Massachusetts:
Boiler installation must conform to Commonwealth of Massachusetts code 248 CMR which includes but is not limited to:
- Installation by licensed plumber or gas fitter.

2.4 Manufacturer recommends use of Carbon Monoxide monitor may be requirement of local jurisdiction.

2.5 Designated Use
- **DCC-115, DCC-150** and **DCC-205** provide both central heating and domestic hot water.
- **DCB-100, DCB-125** and **DCB-165** central heating only.
- Indoor installation.
- Closet or alcove installation. Direct Vent Boiler does not require air vents when installed in closet or room.
- Direct vent boiler.
- For use with natural gas or liquefied petroleum gases (LP/propane).

2.6 The unit MUST NOT:
- Directly heat potable water. Indirect heating is acceptable.
- Heat water with non-hydronic heating system chemicals present (example, swimming pool water).
- Toxic chemicals, such as those used for boiler treatment, shall not be introduced into potable water used for space heating.
- Exceed 43 psig (2.96 bar) maximum system pressure, or drop below minimum system pressure 7.25 psig (.50 bar)
- Exceed 176°F (80°C) system design temperature.

2.7 Operational Features
- **DCB-100** Modulates input to provide CH Turndown 5.6:1
- **DCC-115** Modulates input to provide CH Turndown 5.6:1, DHW Turndown 6.9:1
- **DCB-125** Modulates input to provide CH Turndown 5.7:1
- **DCC-150** Modulates input to provide CH Turndown 5.7:1, DHW Turndown 7:1
- **DCB-165** Modulates input to provide CH Turndown 5.5:1
- **DCC-205** Modulates input to provide CH Turndown 5.5:1, DHW turndown 7:1

Maximum output available for domestic hot water:
- **DCC-115** - 105,500 btu/hr (33.8 kW) capable of providing 2.5 (U.S.) gpm (11.4 liters/min) with a temperature rise of 70°F/39°C.
- **DCC-150** - 136,000 btu/h (40 kW), capable of providing 3.5 (U.S.) gpm (13.2 liters/min) with a temperature rise of 70°F/39°C.
- **DCC-205** - 180,000 btu/hr (53 kW), capable of providing 5.0 (U.S.) gpm (18.9 liters/min) with temperature rise of 70°F/39°C.
- Integral Low Water Pressure Cutoff.
- Optional Outdoor Temperature Reset.
- Heat exchanger over heat protection.
- Boiler operating at maximum operating temperature, providing heat, pressure gauge should not indicate more than 26.11 psi / 1.80 bar. If reading exceeds this figure larger expansion tank is required.

Check our website frequently for updates: www.ecrinternational.com

Information and specifications outlined in this manual in effect at the time of printing of this manual. ECR International reserves the right to discontinue, change specifications or system design at any time without notice and without incurring any obligation, whatsoever.
3 - COMPONENT LISTING

UTICA BOILER MAH-100

Illustrations are a depiction of the boiler for general location of parts and may vary depending on model.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>Dunkirk DCB 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump with Air Separator</td>
</tr>
<tr>
<td>2</td>
<td>Boiler Drain Tap</td>
</tr>
<tr>
<td>3</td>
<td>Gas Valve</td>
</tr>
<tr>
<td>4</td>
<td>Low Water Pressure Cutoff</td>
</tr>
<tr>
<td>5</td>
<td>3-Way Valve with Motor</td>
</tr>
<tr>
<td>6</td>
<td>Water Safety Thermostat</td>
</tr>
<tr>
<td>7</td>
<td>NTC Heating sensor (Flow/Return) QTY 2, (1 Shown for clarity)</td>
</tr>
<tr>
<td>8</td>
<td>Flue Sensor</td>
</tr>
<tr>
<td>9</td>
<td>Pressure Switch</td>
</tr>
<tr>
<td>10</td>
<td>Coaxial Flue Connector</td>
</tr>
<tr>
<td>11</td>
<td>Heat Exchanger Temperature Protector</td>
</tr>
<tr>
<td>12</td>
<td>Heat Exchanger</td>
</tr>
<tr>
<td>13</td>
<td>Burner (not shown)</td>
</tr>
<tr>
<td>14</td>
<td>Ignition electrode</td>
</tr>
<tr>
<td>15</td>
<td>Flame Detection Electrode</td>
</tr>
<tr>
<td>16</td>
<td>Air/Gas Manifold</td>
</tr>
<tr>
<td>17</td>
<td>Fan</td>
</tr>
<tr>
<td>18</td>
<td>Venturi</td>
</tr>
<tr>
<td>19</td>
<td>Air Vent</td>
</tr>
</tbody>
</table>
Component Listing

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump with Air Separator</td>
</tr>
<tr>
<td>2</td>
<td>Boiler Drain Tap</td>
</tr>
<tr>
<td>3</td>
<td>Gas Valve</td>
</tr>
<tr>
<td>4</td>
<td>Low Water Pressure Cutoff</td>
</tr>
<tr>
<td>5</td>
<td>3-Way Valve with Motor</td>
</tr>
<tr>
<td>6</td>
<td>Water Safety Thermostat</td>
</tr>
<tr>
<td>7</td>
<td>NTC Heating sensor (Flow/Return) QTY 2, (1 Shown for clarity)</td>
</tr>
<tr>
<td>8</td>
<td>Flue Sensor</td>
</tr>
<tr>
<td>9</td>
<td>Pressure Switch</td>
</tr>
<tr>
<td>10</td>
<td>Coaxial Flue Connector</td>
</tr>
<tr>
<td>11</td>
<td>Heat Exchanger Temperature Protector</td>
</tr>
<tr>
<td>12</td>
<td>Heat Exchanger</td>
</tr>
<tr>
<td>13</td>
<td>Burner (not shown)</td>
</tr>
<tr>
<td>14</td>
<td>Ignition electrode</td>
</tr>
<tr>
<td>15</td>
<td>Flame Detection Electrode</td>
</tr>
<tr>
<td>16</td>
<td>Air/Gas Manifold</td>
</tr>
<tr>
<td>17</td>
<td>Venturi</td>
</tr>
<tr>
<td>18</td>
<td>Fan</td>
</tr>
<tr>
<td>19</td>
<td>Air Vent</td>
</tr>
</tbody>
</table>

Illustrations are a depiction of the boiler for general location of parts and may vary depending on model.
Component Listing

Dunkirk - DCB 165

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>Description</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Boiler Drain Tap</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Low Water Pressure Cutoff</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Gas Valve</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NTC Heating sensor (Flow/Return)</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Water Safety Thermostat</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Flue Sensor</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Coaxial Connector</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Heat Exchanger Temperature Protector</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Heat Exchanger</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Burner Door Temperature Sensor</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Burner (not shown)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Ignition Electrode</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Flame Detection Electrode</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Air/Gas Blend Manifold</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Air Vent</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Venturi</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Silencer</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Fan</td>
<td></td>
</tr>
</tbody>
</table>

Illustrations are a depiction of the boiler for general location of parts and may vary depending on model.
Component Listing

Illustrations are a depiction of the boiler for general location of parts and may vary depending on model.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>Component Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump with Air Separator</td>
</tr>
<tr>
<td>2</td>
<td>Boiler Drain Tap</td>
</tr>
<tr>
<td>3</td>
<td>Flow Sensor with Water Filter and Flow Restrictor</td>
</tr>
<tr>
<td>4</td>
<td>DHW Priority Sensor</td>
</tr>
<tr>
<td>5</td>
<td>Controlled Fast Fill</td>
</tr>
<tr>
<td>6</td>
<td>Gas Valve</td>
</tr>
<tr>
<td>7</td>
<td>NTC DHW Sensor</td>
</tr>
<tr>
<td>8</td>
<td>Low Water Pressure Cutoff</td>
</tr>
<tr>
<td>9</td>
<td>3-Way Valve with Motor</td>
</tr>
<tr>
<td>10</td>
<td>Check Valve</td>
</tr>
<tr>
<td>11</td>
<td>DHW Heat Exchanger</td>
</tr>
<tr>
<td>12</td>
<td>Water Safety Thermostat</td>
</tr>
<tr>
<td>13</td>
<td>NTC Heating sensor (Flow/Return) QTY 2, (1 Shown for clarity)</td>
</tr>
<tr>
<td>14</td>
<td>Coaxial Connector</td>
</tr>
<tr>
<td>15</td>
<td>Heat Exchanger Temperature Protector</td>
</tr>
<tr>
<td>16</td>
<td>Flue Sensor</td>
</tr>
<tr>
<td>17</td>
<td>Heat Exchanger</td>
</tr>
<tr>
<td>18</td>
<td>Burner (not shown)</td>
</tr>
<tr>
<td>19</td>
<td>Ignition Electrode</td>
</tr>
<tr>
<td>20</td>
<td>Flame Detection Electrode</td>
</tr>
<tr>
<td>21</td>
<td>Air/Gas Blend Manifold</td>
</tr>
<tr>
<td>22</td>
<td>Venturi</td>
</tr>
<tr>
<td>23</td>
<td>Fan</td>
</tr>
<tr>
<td>24</td>
<td>Air Vent</td>
</tr>
</tbody>
</table>

DUNKIRK - DCC 115
DUNKIRK DCC-150

Illustrations are a depiction of the boiler for general location of parts and may vary depending on model.
3 - COMPONENT LISTING

DUNKIRK DCC-205

Illustrations are a depiction of the boiler for general location of parts and may vary depending on model.
4.1 Boiler Location Considerations

- Ambient room temperature always above 32°F (0°C) to prevent freezing of liquid condensate.
- Approved for installation in closets or alcove provided it is correctly designed for that purpose and minimum clearances are met.
- Protect gas ignition system components from water (dripping, spraying, rain, etc.) during operation and service (circulator replacement, condensate trap, control replacement, etc.).
- Access to outdoors to meet minimum and maximum pipe lengths for combustion air and vent piping. See section 5.
- Disposal of condensate. See section 5.
- Drainage of water (or water - antifreeze solution) during boiler service or from safety relief valve discharge. See section 6.
- Access to system water piping, gas supply, and electrical service. See sections 6, 7 and 8.
- Clearances to combustible materials and service clearances. See Table 1 and Figures pg. 15.
- Boiler shall be installed on flat vertical wall which is capable of supporting the weight of the boiler.
- Room-sealed boiler installed in a room containing bath or shower shall be installed so person using bath or shower cannot touch any electrical switch or boiler control utilizing line voltage electricity.
- Multiple Boilers can be wall mounted, placed side by side, or back to back.
- Observe service clearances in all installations.
- For Direct Vent installations, air vents are not required in room boiler is installed in, or when installed in closet or compartment.
- Requires fresh air intake piped from outdoors.
- Install a filter on the air intake if boiler is installed in dusty or dirty enviroment. A high flow air filter with minimum air filtration of 800 cfm can be placed on the air intake section of the vent pipe. Boiler performance at maximum vent length may be impacted when an air filter is used.
- Use of unregulated gas (well gas) is not manufacturer recommended with this boiler.

TABLE 1: BOILER CLEARANCES

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Combustible Materials (1)</th>
<th>Manufacturer Recommended for Service (1)(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>0" (0 cm)</td>
<td>8-5/8" (220 mm)</td>
</tr>
<tr>
<td>Left Side</td>
<td>1-3/4" (45 mm)</td>
<td>1-3/4" (45 mm)</td>
</tr>
<tr>
<td>Right Side</td>
<td>1-3/4" (45 mm)</td>
<td>1-3/4" (45 mm)</td>
</tr>
<tr>
<td>Front</td>
<td>0" (0 mm)</td>
<td>17-3/4"(450 mm)</td>
</tr>
<tr>
<td>Back</td>
<td>0" (0 mm)</td>
<td>0" (0 mm)</td>
</tr>
<tr>
<td>Bottom</td>
<td>0" (0 mm)</td>
<td>*9-13/16" (250 mm)</td>
</tr>
<tr>
<td>Combustion Air/ Vent piping</td>
<td>0" (0 mm)</td>
<td>6" (160 mm)</td>
</tr>
</tbody>
</table>

(1) Required distances measured from boiler jacket.
(2) Service, proper operation clearance recommendation.
* Allowance for piping at the bottom of boiler not included.

NOTE: Greater clearances for access should supersede fire protection clearances.
4.2 Clearances

Service Clearances

- Left Side View of Boiler
- Front View of Boiler

Combustible Clearances

- Back View
- Top View
- Closet Installation
- Front View of Boiler
CAUTION

Lift boiler using chassis. Do not use front jacket, vent piping, water or gas fittings to lift boiler as it may cause damage to the boiler.

Use two (2) wrenches when tightening and fitting to pipe boiler's threaded fittings. Boiler's internal piping can be damaged if subjected to excessive torque.

4.3 Wall Mounting

1. Decide position of boiler on the wall allowing for all required clearances and flue terminal position.
2. Tape template to the wall. Ensure template is level and upright. Mark position of holes for boiler mounting bracket and plumbing connections.
3. Rear exit flue - mark position of hole for flue.
4. Side exit flue - mark horizontal center line of flue across the wall to side wall, then along side wall (ensure lines are parallel and sloped properly towards the boiler, refer to section 6. This will give position of center of hole for flue.
5. Cut hole in wall for coaxial flue. See sizing below:
 - 100, 115, 125 & 150 - 4 ¼" [110 mm] diameter
 - 165 & 205 - 5 ⅜" [135 mm] diameter
6. Pre-pipe supply and return water connections with factory fittings before wall mounting.
7. Mount boiler on wall using wall mounting bracket included with unit.
8. Adjust the position of the boiler verify it is level and plumb.
5 - COMBUSTION AIR AND VENT PIPING

WARNING
Fire, explosion, and asphyxiation hazard. Improper installation could result in death or serious injury. Read these instructions and understand all requirements before beginning installation.

ABS/PVC venting shall not to be used this product. Use of DWV plumbing pipes to vent this boiler shall be prohibited.
Use of cellular core PVC (ASTM F891), cellular core CPVC, or Radel® (polyphenol sulfone) in venting systems shall be prohibited.
Covering non-metallic vent pipe and fittings with thermal insulation shall be prohibited.
Failure to follow these instructions could result in death or serious injury.

ABS/PVC venting shall not to be used this product. Use of DWV plumbing pipes to vent this boiler shall be prohibited.
Use of cellular core PVC (ASTM F891), cellular core CPVC, or Radel® (polyphenol sulfone) in venting systems shall be prohibited.
Covering non-metallic vent pipe and fittings with thermal insulation shall be prohibited.
Failure to follow these instructions could result in death or serious injury.

5.1 General
- Installations shall comply with Authority having jurisdiction and in absence of such with:
 » U.S. ANSI Z223.1 /NFPA 54 in the United States

- This boiler requires a dedicated direct vent system.
- Vent connections serving appliances vented by natural draft shall not be connected into any portion of mechanical draft systems operating under positive pressure.
- Use only manufacturer approved venting materials or venting materials primer and glue approved to: ULC S636 in Canada, or UL 1738 in the U.S.
- Materials used in the U.S. shall comply with Authority having jurisdiction and in absence of such with: ANSI/ASTM D1785, ANSI/ASTM F441, ANSI/ASTM F493. Vent system must have unrestricted movement through walls, ceilings and roof penetrations.
- Check for proper joint construction when joining pipe to fittings.
- If vent is penetrating ceilings and floors, openings must have means of fire stopping in joist areas and proper fire-stop spacer assemblies installed.
- Standard roof flashing methods must be used to install roof flashing.
- Frame wall and roof openings to provide support for attachment of termination assemblies.
- Support piping in accordance with pipe manufacturer's instruction and authority having jurisdiction. In absence of manufacturer's instruction use pipe hooks, pipe straps, brackets, or hangers of adequate and strength located at intervals of 3 ft. (1.m) or less. Allow for expansion/contraction of pipe.
5.2 Removal of Existing Boiler From Common Vent System

When existing boiler is removed from common venting system, common venting system is likely to be too large for proper venting of appliances remaining connected to it. After removal of existing boiler, following steps shall be followed with each appliance remaining connected to common venting system placed in operation, while other appliances remaining connected to common venting system are not in operation:

- Seal any unused openings in common venting system.
- Visually inspect venting system for proper size and horizontal pitch. Determine there is no blockage or restrictions, leakage, corrosion and other deficiencies which could cause an unsafe condition.
- When practical, close all building doors, windows, and all doors between space in which appliances remaining connected to common venting system are located and other spaces of building. Turn on clothes dryer and any appliance not connected to common venting system. Turn on exhaust fans, such as range hoods and bathroom exhaust so they will operate at maximum speed. Do not operate summer exhaust fan. Close fireplace dampers.
- Turn on appliance being inspected. Follow lighting instructions. Adjust thermostat so appliances will operate continuously.
- Test for spillage at draft hood relief opening after 5 minutes of main burner operation. Use flame of match or candle, smoke from cigarette, cigar or pipe.
- Determine each appliance remaining connected to common venting system properly vents when tested as outlined above. Then return doors, windows, exhaust fans and any other gas-burning appliance to their previous condition of use.
- Any improper operation of common venting system should be corrected so installation conforms with National Fuel Code, ANSI Z223.1/NFPA 54 and/or Natural Gas and Propane Installation Code, CAN/CSA B149.1. When re-sizing any portion of common venting system, common venting system should be re-sized to approach minimum size as determined using appropriate tables in Chapter 13 of the National Fuel Gas Code, ANSI Z223.1/NFPA 54 and/or Natural Gas and Propane Installation Code, CAN/CSA B149.1.

5.3 Definitions

1. Coaxial piping – Exhaust and air intake pipe have a common axis.

2. Twin Pipe - Exhaust and intake air are separate pipes, can be terminated using single wall terminals from the vent manufacturer or field built configuration using elbows or tees.
5.4 Approved Venting Materials

Installation shall conform to requirements of authority having jurisdiction or in absence of such requirements:

WARNING

Manufacturer recommends this condensing boiler be vented with approved polypropylene venting material. Use only materials listed below for vent pipe, intake air pipe, and fittings. Failure to comply could result in death or serious injury.

- Covering non-metallic vent pipe and fittings with thermal insulation shall be prohibited.
- Use of cellular core PVC for venting flue gas could result in death, or serious injury.
- Coaxial venting shall be fastened with screws. Dual flue venting is NOT fastened with screws.

Do not use cellular core pipe. Only specified sized pipes are to be used. When using vent material other than boiler manufacturer's venting, note the correct installation procedure. Failure to follow these instructions could result in death, or serious injury.

5.5 Vent Termination

- Terminate combustion air and vent pipes with fittings or coaxial vent kit.
- Use horizontal pipe for vent and 90° elbow for combustion air termination when using fittings.
- Separate vent terminal from air inlet terminal to prevent flue gas recirculation. If T-Terminal is used on flue pipe at sidewall, air inlet terminal shall be at least 36” or more away from vent terminal.
- Locate combustion air termination as far as possible from swimming pool, swimming pool pump house, and other sources of airborne chlorine.
- Locate combustion air and vent terminals as required by authority having jurisdiction.

Approved Polypropylene Manufacturers

* Natalini
* DuraVent®
* Centrotherm
* Z-Flex®

Note: Maximum equivalent length may vary between manufacturers.

1. Venting shall be properly supported.
2. Boiler shall not support any type of vent system.
3. All piping, glue, solvents, cleaners, fittings and components must conform to ASTM and ANSI standards. In Canada ULC S636 and in the USA UL 1738 schedule 40 CPVC are the only approved vent system to be used as an alternative to polypropylene venting for the exhaust pipe.
4. Manufacturer requires use of a mechanical fastener at every push-fit gasket connection when using a single wall polypropylene vent system.

Install an air filter which allows at least 800 cfm if the area is subject to dirty or dusty intake air. Boiler performance at maximum length may be impacted when an air filter is used.

If interior or exterior construction in vicinity of boiler is taking place, take precautions to avoid exposing the boiler to fine particulate dust. If boiler is exposed to any dust or dirt it must be cleaned and serviced.
5 - COMBUSTION AIR AND VENT PIPING

VENT MATERIAL OPTIONS

(Maximum Equivalent Vent Length Shown)

<table>
<thead>
<tr>
<th>Vent Type</th>
<th>Vent Size</th>
<th>Vent Material</th>
<th>Intake (L1)</th>
<th>Exhaust (L2)</th>
<th>Combined Vent (L1+L2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twin Pipe</td>
<td>2" (60 mm)</td>
<td>Polypropylene</td>
<td>Max 85 ft (25.9 m) Min 6 ft (1.8 m)</td>
<td>Max 85 ft (25.9 m) Min 6 ft (1.8 m)</td>
<td>Max 170 ft (51.8 m) Min 12 ft (3.6 m)</td>
</tr>
<tr>
<td>Twin Pipe</td>
<td>2" (60 mm)</td>
<td>Flexible Exhaust* w/ Rigid 3" PP Intake</td>
<td>Max 49 ft (15 m) Min 6 ft (1.8 m)</td>
<td>Max 147 ft (45 m) Min 6 ft (1.8 m)</td>
<td>Max 196 ft (60 m) Min 12 ft (3.6 m)</td>
</tr>
<tr>
<td>Coaxial</td>
<td>2"/4" (60 mm/100 mm)</td>
<td>Polypropylene</td>
<td>Max 32.8 ft (10 m) Min 6 ft (1.8 m)</td>
<td>Max 27.88 ft (8.5 m) Min 6 ft (1.8 m)</td>
<td>Max 24.60 ft (8.5 m) Min 6 ft (1.8 m)</td>
</tr>
<tr>
<td>Coaxial</td>
<td>3"/5" (80 mm/128 mm)</td>
<td>Polypropylene</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

*For vertical runs only

**In Canada ULC S636 and in the USA UL1738 schedule 40 CPVC are the only approved Vent Material to be used as an alternative to Polypropylene venting for the exhaust pipe.

165/205

<table>
<thead>
<tr>
<th>Vent Type</th>
<th>Vent Size</th>
<th>Vent Material</th>
<th>Intake (L1)</th>
<th>Exhaust (L2)</th>
<th>Combined Vent (L1+L2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twin Pipe</td>
<td>2" (60 mm)</td>
<td>Polypropylene</td>
<td>Max 85 ft (25.9 m) Min 6 ft (1.8 m)</td>
<td>Max 85 ft (25.9 m) Min 6 ft (1.8 m)</td>
<td>Max 170 ft (51.8 m) Min 12 ft (3.6 m)</td>
</tr>
<tr>
<td>Twin Pipe</td>
<td>2" (60 mm)</td>
<td>Flexible Exhaust* w/ Rigid 3" PP Intake</td>
<td>Max 100 ft (30.5 m) Min 6 ft (1.8 m)</td>
<td>Max 100 ft (30.5 m) Min 6 ft (1.8 m)</td>
<td>Max 200 ft (60.9 m) Min 12 ft (3.6 m)</td>
</tr>
<tr>
<td>Coaxial</td>
<td>2"/4" (60 mm/100 mm)</td>
<td>Polypropylene</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Coaxial</td>
<td>3"/5" (80 mm/128 mm)</td>
<td>Polypropylene</td>
<td>Max 32.8 ft (10 m) Min 6 ft (1.8 m)</td>
<td>Max 32.8 ft (10 m) Min 6 ft (1.8 m)</td>
<td>Max 32.8 ft (10 m) Min 6 ft (1.8 m)</td>
</tr>
</tbody>
</table>

*For vertical runs only

**In Canada ULC S636 and in the USA UL1738 schedule 40 CPVC are the only approved Vent Material to be used as an alternative to Polypropylene venting for the exhaust pipe.

5.6 Coaxial Venting Instructions

Maximum equivalent flue lengths for Coaxial venting are:

<table>
<thead>
<tr>
<th>Coaxial Pipe Vent Lengths (Includes First Elbow And Termination)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Size</td>
</tr>
<tr>
<td>Vent Size</td>
</tr>
<tr>
<td>Coaxial Elbows - Equivalent length</td>
</tr>
<tr>
<td>Natalini</td>
</tr>
<tr>
<td>DuraVent</td>
</tr>
<tr>
<td>Centrotherm</td>
</tr>
</tbody>
</table>

NOTE: Coaxial venting can run horizontal or vertical.

- Connect flue elbow to top of boiler and adjust direction of elbow to desired orientation (rear, right or left).
- Measure distance from outside wall face to elbow, this dimension will be known as "X", add distance "Y" + 2" (60 mm) to "X" this is the total dimension of the vents or use venting manufacturers instructions. See Figure 5-3.
- Mark dimension from above on outer aluminum intake vent. Measure length of waste material, and transfer dimension to inner grey flue pipe.
- Remove waste from both vents (flue and air). Verify cut ends are square and free from burrs. Insert flue back into intake air vent and pass them through hole in wall.
- Check all measurements before cutting. Clearance to combustible materials is zero when using coaxial vent system.
- After installing venting use calibrated analyzer to verify there is no recirculation of combustion.
- Ensure termination is positioned with slots at the bottom.

WARNING

Asphyxiation hazard. Before securing the screws ensure the pipe has been pushed in a minimum of 1-3/4" (45 mm) into the gasketed end of the other pipe. Failure to follow these instructions could result in death or serious injury.

FIGURE 5-3 - Coaxial Venting Horizontal or Vertical

CAN BE USED ON ALL SIZES

Coaxial Elbows - Equivalent length

<table>
<thead>
<tr>
<th>4"/2" [100 mm/60 mm]</th>
<th>5"/3" [128 mm/80 mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°</td>
<td>1.64 ft. [0.5 m]</td>
</tr>
<tr>
<td>90°</td>
<td>3.28 ft. [1.0 m]</td>
</tr>
</tbody>
</table>

Coaxial Termination - Equivalent length 3 ft (0.9m)

WT = Wall Thickness

Note: 2" is insertion depth of straight pipe to elbow.
5.7 Coaxial Vent Screw Placement - See Figure 5-2
Two (2) screws shall be fastened through the outer intake pipe behind the gaskets at equal distances, approximately 180° apart. Note the screws used must be no larger than No. 8-3/4 sheet metal screws and must be zinc coated.

Figure 5-2 - Coaxial Screw Placement

FIGURE 5-4 Roof Mount Coaxial Venting
CAN BE USED ON ALL SIZES

- Maintain 12" (305 mm) US (18" (457 mm) Canada) clearance above highest anticipated snow level
- 24" (610 mm) above roof or ground

FIGURE 5-6 Side Wall Coaxial Venting
CAN BE USED ON ALL SIZES

- Min. 8" (181 mm) Max. 14" (356 mm) clearance above highest anticipated snow level
- 24" (610 mm) above roof or ground

FIGURE 5-5 - Coaxial Vertical Exhaust -
CAN BE USED ON ALL SIZES

- 12" (305 mm) Minimum Separation
- Manufacturer Recommends Greater Separation

FIGURE 5-7 - Coaxial Horizontal Exhaust -
CAN BE USED ON ALL SIZES

- 24" (610 mm) Min. Separation
- Manufacturer Recommends Greater Separation
5.8 Twin Pipe Systems

Twin pipe venting allows exhaust flue and intake flue to be separated from each other. Fresh air is drawn in at a different area from the flue terminal location.

A. Twin Pipe CPVC System

CPVC is approved for boiler exhaust. CPVC or PVC are both approved for air intake.

To transition from Coaxial at the top of the boiler to Twin Pipe CPVC/PVC a kit is available.

B. Twin Pipe Polypropylene System

Single wall polypropylene is used for both exhaust and air intake piping. PVC can be used on intake only on twin pipe applications.

Use the appropriate transition kit to change from polypropylene to PVC. To transition from Coaxial, at the top of the boiler to Twin Pipe polypropylene venting an adapter kit is available.

C. Twin Pipe Separated Flue

Exhaust and combustion air intake are not located in same general location.

D. Twin Pipe - Common Atmospheric Zone Termination

Exhaust and combustion air intake are located in same general location and are of equal length.

<table>
<thead>
<tr>
<th>Twin Pipe Maximum Vent Lengths (Includes first elbow and termination)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler</td>
</tr>
<tr>
<td>Vent Size</td>
</tr>
<tr>
<td>Intake Vent L1</td>
</tr>
<tr>
<td>Exhaust Vent L2</td>
</tr>
<tr>
<td>Combined Vent L1+L2</td>
</tr>
</tbody>
</table>

Single Wall Elbows - Equivalent Length

<table>
<thead>
<tr>
<th></th>
<th>3” (80 mm)</th>
<th>2” (60 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45° bend</td>
<td>0.82 ft [0.25 m]</td>
<td>3 ft [0.91 m]</td>
</tr>
<tr>
<td>90° bend</td>
<td>1.64 ft [0.50 m]</td>
<td>5 ft [1.5 m]</td>
</tr>
</tbody>
</table>

NOTE: Two pipe can be installed horizontally or vertically.
5.9 Securing Twin Pipe Polypropylene Venting

Venting manufacturer’s use a device to secure single wall twin pipe polypropylene vent pieces to each other. Proper application of the securing mechanism is necessary for any use of twin pipe polypropylene venting on exhaust or air intake. Securing mechanism is for indoor use only and should not be used in outdoor applications. Follow venting manufacturer’s instructions for applying the securing mechanism on twin pipe polypropylene venting.

Example for Natalini venting system. See Figure 5-11
(For other venting system suppliers see their instructions.)

1. Place clamp so etched "UP" is facing up.
2. Open clamp slightly by separating circular areas from each other.
3. Slide male end of first pipe through open clamp so the shoulder of the female end of the pipe stops the clamp from sliding off the pipe.
4. Insert the male end of the second pipe into the clamp on the "up" etched side. Force the two pipes together.
5. Verify the two pipes are secure together with clamp in place.
Roof Terminations

- 12" (305 mm) Min. horizontal separation between combustion air intake and vent of same appliance.
- 12" (305 mm) Min. 84" (2.2 m) Max. vertical separation between combustion air intake and vent of different appliances.
- 15" (381 mm) Max. horizontal length of vent.
- Min. vent/intake between different appliances 12" (305 mm).
- Max. allowable total vertical vent length with outside exposure is 10 ft. (3.05 m).
- Abandoned unused masonry chimney may be used as chase-way for combustion air and vent. Both combustion air and vent pipe must exit above top of chimney with clearances as shown in Figure 5-14.

FIGURE 5-14 - (2"/60 mm & 3"/80 mm) Twin Pipe Roof Vent CAN BE USED ON ALL SIZES

- 12" (305 mm) US, 18" (458 mm) Canada Min. Above Anticipated Snow Line

FIGURE 5-15 - (3"/80 mm ONLY) Single Wall Exhaust Kit and Air Intake Minimum Distance Center to Center

- This Termination can be used on: 3"/ 80 mm ALL SIZES vent pipe only

FIGURE 5-16 - Horizontal Twin Pipe, Exhaust and Intake

- 12" (305 mm) Minimum Separation

FIGURE 5-12 - Twin Pipe on Roof Combustion Air On Sidewall CAN BE USED ON ALL SIZES

FIGURE 5-13 - Twin Pipe Flue On Sidewall, Combustion Air On Roof CAN BE USED ON ALL SIZES
5 - COMBUSTION AIR AND VENT PIPING

FIGURE 5-17 - Twin Pipe Side Wall Vent (Multiple Appliances)

NOTE: 3" shown for clarity. 12" between vent and combustion air of other boilers required in all multiple boiler installations.

FIGURE 5-18 - (3" / 80 mm ONLY) Twin Pipe Side Wall with 45° Vent

This Termination can be used on:
2" / 60 mm ON 165/205

FIGURE 5-19 - (3" / 80 mm ONLY) Twin Pipe Side Wall Vent

3" / 80 mm ON ALL SIZES

vent only

See Grade, Snow & Ice

FIGURE 5-20 - (2''/ 60 mm ONLY) Vent Pipe with T CAN BE USED ON ALL SIZES

See Grade, Snow & Ice

FIGURE 5-21 - (2''/ 60 mm ONLY) Vent Pipe with T CAN BE USED ON ALL SIZES

See Grade, Snow & Ice

FIGURE 5-22 - (2''/ 60 mm ONLY) Twin Pipe Side Wall Vent CAN BE USED ON ALL SIZES

See Grade, Snow & Ice

FIGURE 5-23 - (2''/ 60 mm ONLY) Twin Pipe Side Wall Vent CAN BE USED ON ALL SIZES

See Grade, Snow & Ice

This Termination can be used on:
2" / 60 mm ON 165/205

3" / 80 mm ON ALL SIZES

vent only

This Termination can be used on:
2" / 60 mm ON 165/205

3" / 80 mm

ON ALL SIZES

vent only
5.10 (3” / 80 mm Only) Flexible Vent System

Flexible Pipe Minimum & Maximum Vent Lengths

<table>
<thead>
<tr>
<th>3” [80 mm] Diameter Pipe</th>
<th>100/115/125/150</th>
<th>165/205</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Natalini</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>6 ft</td>
<td>75 ft</td>
</tr>
<tr>
<td>Intake</td>
<td>6 ft</td>
<td>50 ft</td>
</tr>
<tr>
<td>DuraVent®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>6 ft</td>
<td>82 ft</td>
</tr>
<tr>
<td>Intake</td>
<td>6 ft</td>
<td>50 ft</td>
</tr>
<tr>
<td>Centrotherm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>6 ft</td>
<td>52 ft</td>
</tr>
<tr>
<td>Intake</td>
<td>6 ft</td>
<td>50 ft</td>
</tr>
<tr>
<td>Z-Dens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>NA</td>
<td>6 ft</td>
</tr>
<tr>
<td>Intake</td>
<td></td>
<td>1.8 m</td>
</tr>
</tbody>
</table>

Single Wall Elbows - Equivalent Length

<table>
<thead>
<tr>
<th></th>
<th>3” [80 mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>45° bend</td>
<td>0.82 ft [0.25 m]</td>
</tr>
<tr>
<td>90° bend</td>
<td>1.64 ft [0.50 m]</td>
</tr>
</tbody>
</table>

Note
Flexible vent systems shall only be run vertical. Horizontal runs before adapting to flexible must be rigid pipe.

- Maximum vent lengths based on equivalent straight runs only. Include rigid pipe and fittings in overall equivalent length calculations.
- Flexible venting installations use single wall polypropylene to pass flue gases to base of chimney, then flexible venting to get them to termination at the top.
- Combustion air is not supplied through masonry chimney. Combustion air must be from outside using 3” [80 mm] single wall polypropylene.
- Position boiler to use minimum of rigid single wall polypropylene venting to the chimney.
- Follow venting manufacturer’s instructions on assembly and clearances to maintain.
- Avoid sharp bends in flexible venting.
All vent pipe and combustion air pipe and fittings shall comply with the following:

Use only manufacturer approved venting materials or venting materials primer and glue approved to: ULC S636 in Canada, or UL 1738 in the U.S.

Materials used in the U.S. shall comply with Authority having jurisdiction and in absence of such with: ANSI/ASTM D1785, ANSI/ASTM F441, ANSI/ASTM F493.

FIGURE 5-25 - Flue Terminal Location

Vent Termination Minimum Clearances

<table>
<thead>
<tr>
<th>Clearances</th>
<th>US Installations</th>
<th>Canadian Installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Clearance above grade, veranda, porch, deck, or balcony</td>
<td>12” (305 mm)</td>
<td>12” (305 mm)</td>
</tr>
<tr>
<td>B Clearance to window or door that may be opened</td>
<td>12” (305 mm)</td>
<td>3 ft. (0.9 m)</td>
</tr>
<tr>
<td>C Clearance to permanently closed window</td>
<td>*12” (305 mm)</td>
<td>*12” (305 mm)</td>
</tr>
<tr>
<td>D Vertical Clearance to ventilated soffit located above the terminal within a horizontal distance of 2 feet (610 mm) from the center line of the terminal</td>
<td>18” (457 mm)</td>
<td>18” (457 mm)</td>
</tr>
<tr>
<td>E Clearance to unventilated soffit</td>
<td>18” (457 mm)</td>
<td>18” (457 mm)</td>
</tr>
<tr>
<td>F Clearance to outside corner</td>
<td>9” (229 mm)</td>
<td>9” (229 mm)</td>
</tr>
<tr>
<td>G Clearance to inside corner</td>
<td>36” (456 mm)</td>
<td>36” (456 mm)</td>
</tr>
<tr>
<td>H Clearance to each side of center line extended above meter/ regulator assembly</td>
<td>3 ft. (0.9 m) within a height of 15 ft. (4.5 m) above the meter/ regulator assembly</td>
<td>3 ft. (0.9 m)</td>
</tr>
<tr>
<td>I Clearance to service regulator vent outlet</td>
<td>3 ft. (0.9 m)</td>
<td>3 ft. (0.9 m)</td>
</tr>
<tr>
<td>J Clearance to non-mechanical air supply inlet to building or the combustion air inlet to any other appliance</td>
<td>12” (305 mm)</td>
<td>3 ft. (0.9 m)</td>
</tr>
<tr>
<td>K Clearance to mechanical air supply inlet</td>
<td>*3 ft. (0.9 m)</td>
<td>6 ft. (1.8 m)</td>
</tr>
<tr>
<td>L Clearance above paved sidewalk or paved driveway located on public property</td>
<td>*7 ft. (2.1 m)</td>
<td>7 ft. (2.1 m) †</td>
</tr>
</tbody>
</table>

† A vent shall not terminate directly above a sidewalk or paved driveway that is located between two single family dwellings and serves both dwellings.

*For clearances not specified in ANSI Z223.1/NFPA 54 or CSA B149.1, clearance will be in accordance with local installation codes and the requirements of the gas supplier and these installation instructions.

Note: Local Codes or Regulations may require different clearances. Flue terminal must be exposed to external air and position must allow the free passage of air across it at all times. In certain weather conditions the terminal may emit a plume of steam. Avoid positioning terminal where this may cause a nuisance.
5.11 Condensate Piping

- Use materials acceptable to authority having jurisdiction. In absence of such authority:
 - USA - PVC or CPVC per ASTM D1785/D2845 Cement or primer per ASME D2564 or F493.
- No external trap needed.
- Connect condensate hose, hose clamps, and coupling to boiler drain trap as shown in figure 5-26.
- Connect condensate piping to 3/4" PVC for 165/205 or 1/2" PVC for 100/115/125/150 as shown.
- Slope condensate drain pipe minimum 1/4" per foot (21 mm/m) away from boiler.
- Support condensate pipe to eliminate any sages.
- Use field source condensate pump, designated for use with condensing boiler, if boiler located below disposal point.
- Condensate pump should have overflow switch. Condensate from Boiler is slightly acidic and may cause property damage if overflow.
- Field source condensate neutralizing kit as required by authority having jurisdiction or for environmentally friendly condensate disposal.

WARNING

Asphyxiation hazard! Fill condensate trap before starting boiler to avoid combustion products escaping boiler. Failure to follow these instructions could result in death or serious injury.

NOTICE

Manufacturer requires an air vent be used to prevent condensate line vacuum lock.
6.1 General

- Primary/Secondary piping required.
- Install piping in accordance with authority having jurisdiction.
- Support system piping and safety relief valve discharge piping. Boiler's internal piping and wall mount bracket can be damaged if subjected to excessive weight.

NOTICE

The intended use of the internal heat exchanger pump is a boiler loop. Do not use as a primary system pump.

- Size central heating pump (and domestic hot water pump, if used) for system requirements only. Internal heat exchanger pump compensates for pressure drop through boiler internal piping and heat exchanger.
- Thoroughly clean and flush system before connecting to boiler.
- If oil is present in system water, use approved detergent to wash system.
- It is necessary to semi-annually check the water quality of central heating systems.
- Manufacturer recommends installation of magnetic dirt separator in the hydronic system where there are cast iron or steel components, or where the previous boiler was a cast iron heat exchanger. The abrasive, extremely fine sediment is difficult to remove and can deposit onto heat exchange surfaces and accumulate in pump cavities causing reduced efficiency and premature wear.
- Flush system to remove any solid objects such as metal chips, fibers, or Teflon tape, etc.
- Use purge valve to flush zoned systems, each zone separately. If purge valves and isolation valves are not installed, install them to properly clean the system.
- When purging installations that include standing iron radiators and systems with manual vents at high points, start with nearest manual air vent. Open the vent until water flows out, then close vent. Repeat this procedure, working toward furthest air vent.
- Install a basket strainer if large amounts of sediment is present. Keep basket clear of sediment build up.
- Manufacturer recommends a water treatment product be used for sediment removal.
- Ensure piping in the heating system has an oxygen barrier.

WARNING

- Poison hazard. Ethylene glycol is toxic. Do not use ethylene glycol.
- Never use automotive or standard glycol antifreeze, even ethylene glycol made for hydronic systems.
- Ethylene glycol can attack gaskets and seals used in hydronic systems.
- Do not use petroleum based cleaning or sealing compounds boiler system.
- Do not fill boiler or boiler system with softened water.
- Use only inhibited propylene glycol solutions certified by fluid manufacturer as acceptable for use with closed water heating system.
- Thoroughly clean and flush any system that used glycol before installing new Boiler.
- Provide user with Material Safety Data Sheet (MSDS) on fluid used.
FIGURE 6-2 Safety Relief Valve Discharge Piping

Safety Relief Valve

Do not use plastic pipe see Warning below.

Check Local Codes For Maximum Distance To Floor

6.3 Safety Relief Valve and Air Vent

- Install safety relief valve using pipe fitting provided with boiler. See Figure 6-2.
- Install safety relief valve with spindle in vertical position.
- Do not install shutoff valve between boiler and safety relief valve.
- Install discharge piping from safety relief valve. Do not use plastic pipe.
- Use ¾” or larger pipe.
- Use pipe suitable for temperatures of 375°F (191°C) or greater. Do not use plastic pipe on safety relief valve.
- Individual boiler discharge piping shall be independent of other discharge piping.
- Size and arrange discharge piping to avoid reducing safety relief valve relieving capacity below minimum relief valve capacity stated on rating plate.
- Run pipe as short and straight as possible to location protecting user from scalding and properly drain piping.
- Install union, if used, close to safety relief valve outlet.
- Install elbow(s), if used, close to safety relief valve outlet and downstream of union (if used).
- Terminate pipe with plain end (not threaded).

Note

Do not expose boiler and condensate piping to freezing temperatures.

- System piping exposed to freezing conditions: Use inhibited propylene glycol solutions certified by fluid manufacturer for use with closed water heating system. Do not use automotive or ethylene glycol.
- Boiler installed above radiation level (or as required by authority having jurisdiction). Integral low water pressure switch is provided in boiler.
- Boiler used in connection with refrigeration system. Install piping in parallel with boiler, with appropriate valves to prevent chilled medium from entering boiler.
- System piping connected to heating coils located in air handling unit exposed to refrigerated air circulation. Install flow control valves or other automatic means to prevent gravity circulation of boiler water during cooling cycle.
- Boiler used to provide heat to fan coil unit, which also contains a refrigeration coil, precautions should taken to prevent the hot water coil from freezing. Consider items such as a freeze sensor on the hot water coil and/or low ambient controls on the air conditioning unit. It is manufacturer recommended to install a drip pan whenever there is a risk of damage to the area below a fan coil as a result of a water leak.
6.4 Trim Piping
- Temperature - Pressure Gauge. Install temperature pressure gauge using piping provided with boiler. See Figure 6-1.
- Some boiler models may have integral drain valve located inside jacket directly underneath pump. Install provided external drain valve as required.

6.5 System Piping
- Ensure plugs are removed from boiler water connections.
- See Figure 6-7 for basic system piping configurations.
- Systems with automatic fill valves require back flow prevention device.
- Single boiler system. See Figures 6-3, 6-7, for general guidance. Additional considerations:
 - Boiler control only supports integrated pump. Installer responsible for integration of multiple central heating pumps using field supplied external control.
 - Boiler control allows domestic hot water prioritization.

⚠️ WARNING
Burn and scald hazard. Verify all plastic caps are removed from boiler connections. Failure to follow these instructions could result in death or serious injury.

- Thoroughly flush all hydronic piping.
- Secure all valves/fittings to boiler.
- Manufacturer recommends installing an isolation and purge valve to use during commissioning to ensure the boiler does not shut down due to over-temperature. See figure 6-3 and 6-7 for details.
- Do not install isolation valve between boiler and any field installed LWCO.
- Ensure washers supplied are utilized.
- If soldering piping to boiler, avoid over heating and damaging seals and gaskets.
- Connect system valve pipe work to the boiler.
- Route pressure relief valve discharge piping to the floor. Follow local code with respect to necessary distance to the floor. See Figure 6-2.
Low Water Cutoff (LWCO) (See Figure 6-5 for detail)

Position LWCO Above Top of Boiler

Note: Arrange piping to prevent water dripping onto boiler.

Note: Illustrations are meant to show system piping concept only. Installer is responsible for all equipment and detailing required by authority having jurisdiction.

* Check Local Codes for Maximum Distance to Floor.

* To Drain

DO NOT PLACE ISOLATION VALVE BEFORE TEE OR LWCO.
6.6 External Optional Low Water Cut Off
These guidelines are supplied when necessary to install an additional Low Water Cut Off (LWCO), for sensing a low water level condition in a boiler, as required by the Authority Having Jurisdiction.

Follow LWCO manufacturer installation instructions for type of LWCO selected in addition to these instructions.

LWCO shall be 120V/60HZ control and dry contacts sized for load being connected. Wire control to boiler. See Figure 6-4.

Connect LWCO device to the system ground. Ground in accordance with the requirements of the authority having jurisdiction or, in the absence of such requirements, with the National Electrical Code (NEC) or Canadian Electrical Code CEC.

- Locate LWCO sensing device in the supply piping, above the minimum height of boiler. See Figure 6-3, Piping Diagram.
- Position control in HORIZONTAL piping to assure proper boiler protection (upright or 90° rotation).
- For proper operation, sensing element of the LWCO control shall be positioned in the tee to sense the main water stream. Maintain minimum 1/4” spacing from pipe walls. Element shall NOT contact the rear, or side walls of the tee. See Figure 6-5.
- Install an air vent using a tee to avoid nuisance shutdowns.
- Apply small amount of pipe sealant to threaded connections. Use LWCO manufacturer suggested sealant.
- Arrange piping to prevent water dripping onto boiler.
- DO NOT install water shutoff valve between boiler and LWCO sensing device.

FIGURE 6-4 - LWCO Wiring Diagram

FIGURE 6-5 - Low Water Cutoff - Detail
6.7 Manufacturer Recommendation - Strainer on DHW Inlet

Manufacturer Recommendation

Manufacturer strongly recommends the use of a strainer filtering potable water before entering the boiler. The strainer prevents any sedimentation and debris from your water supply piping from entering the boiler. Debris carried from the water supply will clog DHW water flow sensor, potentially resulting in significant operation issues.

Locate the stainer as close to the boiler as possible and place on DHW (domestic hot water) inlet connection located at bottom of the boiler.
6.8 Central Heating System

Boiler is designed for use in a sealed central heating system. Design the system to operate with flow temperatures of up to 176°F (80°C), take pump head, expansion tank size, mean radiator temperature, etc. into account.

Boiler is supplied with the following components: Pressure relief valve - 30.0 psi (2.1 bar). Boiler internal pressure switch will shut boiler off at 43.5 psi /3.0 bar.

Pressure gauge - to indicate the system pressure to be maintained.

By-pass (115,125) - Boiler incorporates an automatic by-pass, However, where all radiators are fitted with thermostatic radiator valves, an external by-pass must be fitted.

6.9 Domestic Hot Water Mode

Dunkirk DCC-115, 150 & 205 and DCB 100, 125 & 165 with indirect tank

WARNING

Burn, Scald Hazard! Water temperature over 125°F (51°C) can cause severe burns and scalding. See User's Manual before setting water temperature. Failure to follow these instructions could result in death or serious injury.

- Priority is given to the domestic hot water supply. Demand at tap or shower will override any central heating requirement.

6.10 Frost Protection Mode

Frost protection mode is integrated into the appliance when electricity is connected to the boiler, regardless if power is "on" or "off". If temperature falls below 41°F / 5°C boiler will fire on its minimum setting until flow temperature of 86°F / 30°C is reached.

6.11 Pump Protection

Pump will automatically operate for 1 minute in every 24 hours of inactivity to prevent seizing.
7 - GAS SUPPLY PIPING

7.1 General
- Use piping materials and joining methods acceptable to authority having jurisdiction. In absence of such requirements:
 - USA - National Fuel Gas Code, ANSI Z223.1/NFPA 54
- Install external field sourced main gas shutoff valve, ground joint union, and sediment trap upstream of gas controls, in accordance with state and local requirements.
- Size and install gas piping system to provide sufficient gas supply to meet maximum input at not less than minimum supply pressure.
- Boiler shall be isolated from the gas supply piping system by closing its individual manual shutoff valve during any pressure testing of gas supply piping system at test pressures equal to or less than 1/2 psi (3.40 kPa - 34.47 mbar).

<table>
<thead>
<tr>
<th>MODEL</th>
<th>NATURAL GAS (A)</th>
<th>LIQUID PROPANE (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCB-100</td>
<td>92 ft3/h (2.60 m3/h)</td>
<td>38 ft3/h (2.61 m3/h)</td>
</tr>
<tr>
<td>DCC-115</td>
<td>114 ft3/h (3.22 m3/h)</td>
<td>47 ft3/h (1.32 m3/h)</td>
</tr>
<tr>
<td>DCB-125</td>
<td>118 ft3/h (3.30 m3/h)</td>
<td>51 ft3/h (1.48 m3/h)</td>
</tr>
<tr>
<td>DCC-150</td>
<td>143 ft3/h (4.00 m3/h)</td>
<td>61 ft3/h (1.72 m3/h)</td>
</tr>
<tr>
<td>DCC-165</td>
<td>153 ft3/h (4.30 m3/h)</td>
<td>66 ft3/h (1.85 m3/h)</td>
</tr>
<tr>
<td>DCC-205</td>
<td>191 ft3/h (5.40 m3/h)</td>
<td>82 ft3/h (2.30 m3/h)</td>
</tr>
</tbody>
</table>

- Install boiler so that gas ignition system components are protected from water (dripping, spraying, rain, etc.) during appliance operation and service (circulator replacement, condensate trap, control replacement, etc.).
- Gas meter and supply pipes must be capable of delivering the listed quantity of gas in addition to demand from any other appliances in the house. Boiler requires a minimum 3/4” (19.5 mm) gas supply pipe.
- Support piping with hooks, straps, bands, brackets, hangers, or building structure components to prevent or dampen excessive vibrations and prevent strain on gas connection. Boiler will not support piping weight.
- Use thread (joint) compound (pipe dope) suitable for liquefied petroleum gas.
- Leak test boiler and gas line connections before placing boiler into operation.

Caution

What to Do If You Smell Gas
- Do not try to light any appliance.
- Do not touch any electrical switch; do not use any phone in your building.
- Immediately call your gas supplier from a neighbor’s phone. Follow gas supplier’s instructions.
- If you cannot reach your gas supplier, call the fire department.

Notice

If overheating occurs or gas supply fails to shut off, do not turn off or disconnect electrical supply to pump. Shut off gas supply at location external to the boiler.

Notice

Use of CSA approved corrugated, semi-rigid stainless steel tubing with polyethylene jacketing is approved for use with boilers following tubing manufacturer’s instructions. Use of flexible “appliance whip” gas tubing is not allowed per NFPA 54.

Table

<table>
<thead>
<tr>
<th>REQUIRED GAS SUPPLY PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATURAL GAS</td>
</tr>
<tr>
<td>Min.</td>
</tr>
<tr>
<td>3.5" w.c.</td>
</tr>
<tr>
<td>(0.7 kPa)</td>
</tr>
</tbody>
</table>
7.2 Gas Pipe Recommendations
Configure gas pipe for proper operation and avoid issues with failure to light or maintenance of proper flame during operation, which could cause error codes related to flame signal.

- Incoming pipe size and pressures shall be sufficient for all gas appliances in the building. See Chart next page or reference NFPA-54.
- Use only properly rated and certified materials for gas pipe.
- Use of Schedule 40 metallic pipe and Corrugated Stainless-Steel Tubing (CSST) is manufacturer recommended for best performance.
- Use of Gas Appliance Connectors (flexible connectors typically used for gas stoves or water heaters) is prohibited. Refer to national and local building codes.
- Each fitting in the gas supply pipe shall count as 5 equivalent feet.
- There shall be sufficient gas pressure at the boiler per gas used and appliance rating plate.
- For LP applications there shall be no less than 10 linear feet of properly sized gas pipe excluding fittings from the closest regulator or meter in the gas supply piping.

ACCEPTABLE PIPING FOR PROPANE

PROpane GAS

NOT ACCEPTABLE PIPING

3 Elbows = 15 ft
3 Linear feet = 3 ft
Total equivalent = 18 ft

PROpane GAS

Not Acceptable
This chart is sourced from NFPA-54 2015 with the BTU ratings for the material, length, and diameter of gas pipe.

INTENDED USE: Pipe Sizing Between Natural Gas Meter, or Propane Single - or Second-Stage (Low-Pressure) Regulator and Appliance.

Schedule 40 Metallic Pipe

<table>
<thead>
<tr>
<th>Gas:</th>
<th>Natural</th>
<th>Undiluted Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Pressure:</td>
<td>Less than 2 psi</td>
<td>11.0 in. w.c.</td>
</tr>
<tr>
<td>Pressure Drop:</td>
<td>0.5 in. w.c.</td>
<td>0.5 in. w.c.</td>
</tr>
<tr>
<td>Specific Gravity:</td>
<td>0.60</td>
<td>1.50</td>
</tr>
<tr>
<td>Nominal ID (inches):</td>
<td>3/4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length (ft)</th>
<th>Capacity in Thousands of Btu per Hour</th>
<th>Capacity in Thousands of Btu per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>360</td>
<td>608</td>
</tr>
<tr>
<td>20</td>
<td>247</td>
<td>418</td>
</tr>
<tr>
<td>30</td>
<td>199</td>
<td>336</td>
</tr>
<tr>
<td>40</td>
<td>170</td>
<td>287</td>
</tr>
<tr>
<td>50</td>
<td>151</td>
<td>255</td>
</tr>
<tr>
<td>60</td>
<td>137</td>
<td>231</td>
</tr>
<tr>
<td>80</td>
<td>117</td>
<td>212</td>
</tr>
<tr>
<td>100</td>
<td>104</td>
<td>197</td>
</tr>
</tbody>
</table>

Corrugated Stainless Steel Tubing (CSST) w/ pressure drop of 0.5 inches w.c.

<table>
<thead>
<tr>
<th>Gas:</th>
<th>Natural</th>
<th>Undiluted Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Pressure:</td>
<td>Less than 2 psi</td>
<td>11.0 in. w.c.</td>
</tr>
<tr>
<td>Pressure Drop:</td>
<td>0.5 in. w.c.</td>
<td>0.5 in. w.c.</td>
</tr>
<tr>
<td>Specific Gravity:</td>
<td>0.60</td>
<td>1.50</td>
</tr>
<tr>
<td>Tube Size (inches):</td>
<td>3/4</td>
<td>1</td>
</tr>
<tr>
<td>Flow Designation (EHD):</td>
<td>23 25 30 31</td>
<td>23 25 30 31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length (ft)</th>
<th>Capacity in Thousands of Btu per Hour</th>
<th>Capacity in Thousands of Btu per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>161</td>
<td>254</td>
</tr>
<tr>
<td>20</td>
<td>116</td>
<td>183</td>
</tr>
<tr>
<td>30</td>
<td>96</td>
<td>151</td>
</tr>
<tr>
<td>40</td>
<td>83</td>
<td>131</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
<td>118</td>
</tr>
<tr>
<td>60</td>
<td>68</td>
<td>107</td>
</tr>
<tr>
<td>80</td>
<td>60</td>
<td>94</td>
</tr>
<tr>
<td>100</td>
<td>54</td>
<td>85</td>
</tr>
</tbody>
</table>
7.3 Leak Check Gas Piping
Pressure test boiler and gas connection before placing boiler in operation.
- Pressure test over 1/2 psig (3.5 kPa). Disconnect boiler and its individual gas shutoff valve from gas supply system.
- Pressure test at 1/2 psig (3.5 kPa) or less. Isolate boiler from gas supply system by closing manual gas shutoff valve.
- Locate leakage using gas detector, noncorrosive detection fluid, or other leak detection method acceptable to authority having jurisdiction. Do not use matches, candles, open flames, or other methods that can provide ignition source.
- Correct leaks immediately and retest.

7.4 Gas Orifice - See Figure 7-2
- Model 100, 115 = 4.6 mm (Natural & LP)
- Models 125, 150 = 5.8 mm (Natural & LP)
- Models 165, 205 = 9.0 mm (Natural & LP)

NOTICE
Sediment trap shall be located upstream of gas controls.
8 - ELECTRICAL CONNECTIONS

8.1 General
Electrically bond boiler to ground in accordance with requirements of authority having jurisdiction. Refer to:
- USA- National Electrical Code, ANSI/NFPA 70.
- Install all wiring in accordance with requirements of National Electrical Code and any additional national, state, or local code requirements having jurisdiction.
- All wiring shall be N.E.C. Class 1.
- Boiler shall be electrically grounded in accordance with the National Electrical Code, ANSI/NFPA No. 70-latest edition.
- Boiler requires a 120V 60Hz power supply. Ensure electrical supply is polarized.
- There shall only be one common isolator, providing complete electrical isolation, for boiler and any external controls. Using PVC insulated cable 12 AWGx3C 221°F (105 °C).

8.2 Install Room Thermostat
Install room thermostat on inside wall. Do not install where it will be influenced by drafts, hot or cold water pipes, lighting fixtures, television, sun rays or near a fireplace.

8.3 Electrical Connections
- Boiler requires 120V 60Hz power supply. Verify electrical supply is polarized.
- Boiler shall be grounded and on dedicated circuit.
- Shall be one common isolator, providing electrical isolation for boiler and any external controls. Using PVC insulated cable 18 AWGx3C 221°F (105 °C).
- All wiring must be installed in accordance with requirements of the National Electrical Code and any additional national, state, or local code requirements having jurisdiction. All wiring must be N.E.C. Class 1.
- Canada, installation must conform to CSA C22.1 Canadian Electrical Code Part 1 and any local codes.
- If replacing original boiler wiring use only TEW 105°C or equivalent.
- If appliance is connected to in floor system, install limit thermostat to prevent latter from overheating.

Wiring Diagrams
Wiring diagrams can be found in Appendix A of this Manual.

FIGURE 8-1 Electric Knockouts Bottom Of Boiler -
Illustration shown (size 205), illustration is for location purposes, wiring knockouts found same general location on all sizes.
8.4 Access To Connection Block
1. Ensure there is no line voltage at boiler.
2. Un螺丝 two screws located under front panel. Remove front cover.
3. Guide controller or thermostat wire through round grommet(s) on right side of boiler’s bottom plate.
4. Tilt control box forward by opening holding clip located on left side of control housing.
5. Expose M1 and M2 terminal blocks by removing screw from plastic cover on left. See Figure 8-3.
6. Remove plastic from channel in plastic cover. Run wires through new opening.
7. Connect wires to appropriate terminals on connection block.
8. Tilt control box back to original position. Ensure clip on left side is fully engaged.
9. Replace front cover and screws under front panel.
10. Turn power to boiler on.

Dry contact end switches from various manufacturers can be attached to boiler control PCB.

8.5 Main Supply Connection
Main supply is connected to terminal block M1 which is high voltage (120V / 60Hz).
Fuses, 3.15 A, are incorporated in the power supply terminal block. To check or replace fuse pull out black fuse carrier.

TERMINAL BLOCK M1

(L) = Live (brown)
(N) = Neutral (light blue).
(IELDS) = Ground (yellow-green).
(1) (2) = contact for 120V Room Thermostat.
Place jumper back on terminals 1-2 of boiler terminal block M1 if room thermostat is not used or if Remote Control is not installed.

TERMINAL BLOCK M2

Terminals 1 - 2: buss connection of Open Therm Gateway for ECR programmable room unit thermostat
Terminal 3: not used on Combi units
Terminals 3 - 4: indirect storage tank sensor connection for heat-only boilers
Terminal 4 - 5: outdoor temperature sensor connection (supplied as an accessory)
Terminals 6 - 7 - 8: 24V room thermostat connection
Terminals 9 - 10: 0 - 10V connection
8.6 Install Room End Switch
Install room end switch on inside wall. Do not install where it will be influenced by drafts, hot or cold water pipes, lighting fixtures, television, sun rays or near a fireplace.

Dry contact only - do not apply 24 volts between 6 and 7.

A. Connect Room End Switch
- turn power off to boiler;
- access terminal block M2;
- connect room end switch to terminals 6(R)-7(W)-8(C); Do not apply dry voltage between 2 terminals. Dry contact only.
- turn boiler power on;
- verify room end switch operates per end switch manufacturer instructions.

NOTE: maximum load allowed is 10 mA

Dry contact end switches from various manufacturers can be attached to boiler control PCB.

8.7 Optional Electrical Connections
A. 1K Ohm (1K Ω) Outdoor Temperature Sensor
To connect this accessory, see figure 8-5, terminals 4-5, and instructions supplied with 1K Ω sensor.

B. Setting "Kt" Climate Curve
1. Boiler automatically recognizes OAS sensor when wired to M2 terminal block. Display changes to show current default "Kt" value (80). Note display value.

2. When operating in CH mode, boiler setpoint is determined by the Kt value selected and actual outside air temperature. Refer to applicable °F (or °C) chart, (pg. 30) for setpoint information.
 - Select Kt range which will satisfy the desired boiler delivery temperature based on outdoor temperature range expected for your location. For example: if you need 176°F water when the outside temperature is 20°F and colder, select 35 for your Kt setting.
 - To change"default" Kt value on boiler control use CH Heating buttons.
 - Restrict the upper limit of the Kt curve by using Parameter P16 to set the maximum boiler water temperature. P16 Default is 176°F.

3. When OAS is installed, pressing or buttons will no longer display boiler CH setpoint temperature. It now displays the Kt value which can range from 10 to 90.

4. When scrolling has stopped, boiler will automatically "SAVE" value as new Kt default value and automatically return to CH mode when no Kt adjustment activity is sensed. Kt values can be changed in +/- 1 point increments.

5. To return, to verify or change current Kt "default value, depress one of the CH setpoint adjustment buttons (once), while in any heating or standby mode. Adjust Kt value to obtain desired comfort level.

Note: Sensors used for this boiler are proprietary to the manufacturer. Use of after market sensors will diminish boiler performance.
NOTE:
Temperatures below -40 °F (-40 °C), maximum heating flow temperature set point no longer increases, curves shown on graph become horizontal.
Boiler set-point will override sensor set-point.
8.8 Indirect Storage Tank

Boilers DCB-100 & DCB-125 can be electrically connected to indirect storage tank as follows:
- Connect DHW priority 10K Ω sensor NTC to terminals 3-4 on terminal block M2.
- Insert 10K Ω NTC sensor element in the sensor well of indirect storage tank.
- Verify exchange capacity of the storage boiler coil is appropriate for boiler power.
- Adjust DHW temperature +95 °F...+140 °F (+35 °C...+60 °C) by pressing or on boiler Control.

IMPORTANT: set parameter P03 = 05 as described in: "PARAMETER SETTINGS".

Note
Model 165 Use aquastat for Indirect Tank Control.

Note
Sensors used for this boiler are proprietary to the manufacturer. Use of after market sensors will diminish boiler performance.

8.9 Management of 0-10V Input

The functions with 0...10V regulator are activated by means of their parameters:

To enable 0-10V input change \(P82=4 \) to \(P82=3 \),
- When \(P78=1 \) the input manages the **heating set point temperature directly**.
- When \(P78=2 \) the input manages the **heating power input directly**.

Demand is activated above 3V and heating setpoint is calculated in proportion to deviation from 3 to 10 V DC, to give a setpoint that goes from minimum to maximum.

Terminal # 9 is negative (-), terminal #10 is positive (+).

<table>
<thead>
<tr>
<th>(P78=1)</th>
<th>(P78=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Temp Setting</td>
</tr>
<tr>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>0-3</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td>9</td>
<td>73</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
</tr>
</tbody>
</table>

Note
Model 165 Use aquastat for Indirect Tank Control.
FIGURE 8-8 Circulator Pump Connections

For more information please review the application guide received with your boiler.
9.1 Central Heating System Connections - HEAT ONLY

DCB-100 & DCB-125 HEAT ONLY

WITH OPTIONAL INDIRECT DHW CONNECTION

DCB-165 HEAT ONLY

DCB-100 & DCB-125 HEAT ONLY

WITHOUT OPTIONAL INDIRECT DHW CONNECTION

LEGEND

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pressure Gauge</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Pressure Relief Valve</td>
<td>30.00 psi [2.11 bar]</td>
</tr>
<tr>
<td>C</td>
<td>Heating return connection</td>
<td>3/4" [22.2 mm] 1" [25.4 mm]</td>
</tr>
<tr>
<td>E</td>
<td>Gas shutoff connection</td>
<td>3/4" [22.2 mm]</td>
</tr>
<tr>
<td>H</td>
<td>Drain connection for condensate</td>
<td>13/16" [21 mm] ID Hose 3/4 NPT</td>
</tr>
<tr>
<td>I</td>
<td>Heating supply connection</td>
<td>3/4" [22.2 mm] 1" [25.4 mm]</td>
</tr>
<tr>
<td>J</td>
<td>Optional Indirect DHW connection</td>
<td>3/4" [22.2 mm] na</td>
</tr>
</tbody>
</table>

MANIFOLD

DCB-100 & DCB-125

MANIFOLD

DCB-165
9.2 Central Heating System Connections - Combi

DCC-115 & 150 COMBI

DCC-205 COMBI

LENGEND

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pressure Gauge</td>
<td>Pressure Relief Valve</td>
<td>Heating return connection</td>
<td>Cold DHW inlet tap / system filling connection for Combi</td>
<td>Gas shutoff connection</td>
<td>Boiler Fast Fill</td>
<td>DHW outlet/indirect tank connection</td>
<td>Drain connection for condensate</td>
<td>Heating supply connection</td>
<td>Manifold</td>
<td>5 gpm DHW flow restrictor (Factory installed) (205 only)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>30.00 psi [2.11 bar]</td>
<td>3/4" [22.2 mm]</td>
<td>1/2" [15.9 mm]</td>
<td>3/4" (22.2 mm)</td>
<td>External to Boiler</td>
<td>3/4" [22.2 mm]</td>
<td>13/16" [21 mm] 1D Hose</td>
<td>3/4" [22.2 mm]</td>
<td>1-1/4" (6.35 mm)</td>
<td>na</td>
</tr>
<tr>
<td>115 & 150</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td></td>
<td>1" [25.4 mm]</td>
<td>1" [25.4 mm]</td>
<td>3/4" NPT</td>
<td>3/4" NPT</td>
<td>NA</td>
<td></td>
<td>3/4 NPT</td>
<td></td>
<td>NA</td>
<td>3/4" [22.2 mm]</td>
</tr>
</tbody>
</table>
9.3 System Start Up

Follow all codes and regulations when filling the boiler. Use drain taps to allow system to completely drain. Thoroughly flush the heating system before boiler is connected and again after first heating season.

- Boiler is fitted with automatic air vent positioned on pump Vent and is fitted with adjustable sealing cap. See Figure 9-1.
- Open central heating flow and return valves. Spindle is flat in-line with valve.
- Open fill point valve on filling system until water begins to flow. To aid venting boiler drain may be open until water flows out. Close drain as soon as water appears.
- During initial system air purge open valve connected to top left of heat exchanger. Open four (4) full turns counterclockwise until steady stream of water is witnessed. Close fully turning clockwise with no tools needed. See Figure 9-1.
- Systems using radiators to remove air - Vent each radiator in turn, starting with lowest in the system.
- It is **IMPORTANT** the pump is properly vented to avoid running it dry and damaging its bearings. Unscrew and remove cap from center of pump. Use screwdriver. Rotate exposed spindle about half turn, replace cap.
- Check operation of heating pressure relief valve. Pull lever on top of valve upwards lifting the seat. This will allow water to escape from system. Check water is escaping from the system.
- Open cold water supply inlet valve. Turn on all hot water taps. Allow water to flow until no air is present. Turn off taps. See Physical Data page 4 and section 2.7 Operational Features.

9.4 Fill Condensate Trap with Water

WARNING

Asphyxiation hazard! Fill condensate trap before starting boiler to avoid combustion products escaping boiler. Failure to follow these instructions could result in death or serious injury.

- To fill the condensate trap pour water into exhaust vent until water begins to flow through the siphon.
- Visually inspect the siphon to ensure it is full with clean water.
- During operation check condensate trap to ensure it draining properly.

Note

Condensate trap must be manually filled with water at initial start up.
9.5 Control Panel

To enter the INFO Menu press and hold \(\text{[up]} \) for 1 second. Press and hold the \(\text{[up]} \) button for 1-2 seconds to increment through the selections as shown in the table below. Press \(\text{[off]} \) to exit.

<table>
<thead>
<tr>
<th>(j)</th>
<th>DESCRIPTION</th>
<th>(j)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Secondary fault internal code</td>
<td>09</td>
<td>Setpoint Central Heating (°F/°C)</td>
</tr>
<tr>
<td>01</td>
<td>Heating flow temperature (°F/°C)</td>
<td>10/11</td>
<td>Manufacturing information</td>
</tr>
<tr>
<td>02</td>
<td>Outdoor temperature (°F/°C)</td>
<td>12</td>
<td>Flue sensor temperature (°F/°C)</td>
</tr>
<tr>
<td>03</td>
<td>Indirect Tank DHW temperature (boiler CH only)</td>
<td>13</td>
<td>Manufacturing information</td>
</tr>
<tr>
<td>04</td>
<td>Domestic hot water temperature (boiler with plate exchanger)</td>
<td>14</td>
<td>Identification Open Therm communication</td>
</tr>
<tr>
<td>05</td>
<td>Water pressure in heating system (PSI/bar)</td>
<td>15</td>
<td>Manufacturing information</td>
</tr>
<tr>
<td>06</td>
<td>Heating return temperature (°F/°C)</td>
<td>16</td>
<td>Manufacturing information</td>
</tr>
<tr>
<td>07</td>
<td>Thermo fuse status (000/001)</td>
<td>17</td>
<td>Fan speed ("17"x100)</td>
</tr>
<tr>
<td>08</td>
<td>Not used</td>
<td>18</td>
<td>Manufacturing information</td>
</tr>
</tbody>
</table>

BUTTONS Key

- \(\text{[up]} \) + \(\text{[down]} \): DHW temperature adjustment (+ to increase the temperature and – to decrease it)
- \(\text{[up]} \) + \(\text{[left]} \): Heating water temperature adjustment (+ to increase the temperature and – to decrease it)
- \(\text{[up]} \): Boiler operating information
- \(\text{[left]} \): Operating mode: DHW – DHW & Heating – Heating Only
- \(\text{[off]} \): ON/Off – Reset – Exit menu/functions

SYMBOL Key

- \(\text{[power]} \): Off: heating and DHW disabled (only boiler frost protection is active)
- \(\text{[burner]} \): Burner lit
- \(\text{[ignition]} \): Ignition fault
- \(\text{[pressure]} \): Boiler/system water pressure low
- \(\text{[call]} \): Call a qualified service technician
- \(\text{[error]} \): Manually re-settable fault (\(\text{[off]} \))
- \(\text{[fault]} \): Fault in progress
- \(\text{[programming]} \): Programming menu
- \(\text{[information]} \): Boiler information menu
- \(\text{[setpoint]} \): °C, °F, bar, PSI (Set unit of measurement (SI/US))
9.6 Prior to Commissioning:
- Check system pressure is correct;
- Power boiler;
- Open gas tap (positioned under boiler);
- Select required heating mode. See section 10.4 Operating Modes.

9.7 Commissioning For The First Time:
1. Turn power to boiler on. Code "000" appears on the display. Appliance is ready for "commissioning" procedure.
2. Press ⚪️ and ● at the same time. Hold for 6 seconds. "On" appears on the display for 2 seconds followed by code "312" indicating "de-aeration" function is active. This function lasts 10 minutes.
3. Boiler will turn on after de-aeration function is complete. Display will show code "000" alternating with % of ignition power and temperature value (°F / °C).
 - During this gas recognition function phase which lasts about 7 minutes, type of gas being used is analyzed.
 - During this function, ensure maximum heat exchange out to the system with all zones and circulators running. Maintain system temperature below 176° F for duration of the process until NG or LPG are seen on the display.
 - If boiler operates on Gas A (Natural Gas) and display shows LPG (Gas E), press ⚪️ and ● together and hold down for at least 4 seconds to exit without changing factory setting. Boiler will stay set to Natural Gas.
 - If boiler operates on Gas A (Natural Gas), display shows NG (Natural Gas) for about 10 seconds. Boiler is now ready for normal operation.
 - If boiler operates with Gas A (Natural Gas), and the display shows LPG (Gas E) press ⚪️ and ● together and hold down for at least 4 seconds to exit the function. Change parameter P02=01 as described in section 9.15 Parameter Settings of boiler Installation, Operation and Maintenance Manual. Perform Automatic Calibration Function. Manual Calibration may be necessary if combustion is not within specified range.
 - If boiler operates on Gas E (LPG) and display shows LPG, press ● for at least 6 seconds to confirm gas used.
 - After fuel type is detected confirm P02 is set for the desired fuel type by checking parameter see section 9.15.

9.8 Automatic Calibration Function
Before performing this function verify there are no heat demands in progress.
During this function ensure there is maximum heat exchange to the system in Heating or DHW mode (DHW request) to avoid boiler shutting off due to overheating.
Press ⚪️ and ● together and hold for about 6 seconds. When display indicates "On" press ● within 3 seconds after pressing previous buttons.

Important: If display indicates "303" Automatic Calibration function has not been activated. Disconnect boiler from main power supply for few seconds and repeat procedure.

1. When function is enabled, ⚪️ and ● will flash on the display.
2. After ignition sequence, which can also take place after few attempts, boiler performs three operations. Each operation lasts about 1 minute:
 - maximum power
 - ignition power
 - minimum power
3. Before moving to the next combustion point the P and ⚪️ appear on the display as the control is setting values.
4. During this phase, power level reached by boiler and delivery temperature alternate on the display.
5. When ⚪️, ⚪️, and ● flash together on the display, automatic calibration function has completed.
6. Press ⚪️ to exit the function. Display will show ESC.
7. Verify combustion is within specified range. If not, perform Automatic and then Manual Calibration. (See Section 9.8 and 9.9)
9.10 De-Aeration Function
Used to eliminate air inside the heating circuit when boiler is installed or after maintenance when water is drained from primary circuit.

1. Press buttons \(\text{on} \) together and hold for 6 seconds. On appears on display for a few seconds, followed by program row 312.

2. The electronic board will activate pump on/off cycle for 10 minutes. Function will automatically stop at end of the cycle.

3. To manually exit this function, press \(\text{on} \) buttons together and hold for 6 seconds.

9.11 Commission Set Up (Gas) - Changing The Type Of Gas
During the first installation boiler carries out an automatic commissioning function.

The system is able to detect the gas type present in the network.

Correct gas type setting is made by pressing two buttons at the same time, see section 9.6 Commissioning.

Change of gas type is made after the first installation:
- Change parameter P02. See section 9.6 Commissioning and section 9.15 Parameter Settings.
- Check minimum gas pressure is suitable for selected gas. Minimum gas pressure is determined with boiler operating at high fire and any other appliances connected to same fuel source operational as well (whole house load)
 - Gas A (NG) = 3.5" (8.7 mbar)
 - Gas E (LPG) = 8.0" (19.9 mbar)
- Place supplied label with indication of gas type close to the data plate of boiler replacing the original.
- Perform Automatic Calibration Function - Section 9.8.
- Manufacturer recommends verification of CO2 concentration on the flue.
9.12 Chimney Sweep Function

For correct boiler operation, content of \(\text{CO}_2 - \text{O}_2 \) in the combustion flue must be within tolerances indicated in table below.

<table>
<thead>
<tr>
<th>Combustion Table</th>
<th>Gas A (Natural Gas)</th>
<th>Gas E (LPG)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCB-100 DCC-115 & 150</td>
<td>DCB-125</td>
</tr>
<tr>
<td>CO2 %</td>
<td>O2 %</td>
<td>CO2 %</td>
</tr>
<tr>
<td>Maximum Power (100%)</td>
<td>Nominal value</td>
<td>9.0</td>
</tr>
<tr>
<td>Ignition power (*)</td>
<td>Permitted value</td>
<td>8.5 - 9.5</td>
</tr>
<tr>
<td>Ignition power (*)</td>
<td>Nominal value</td>
<td>8.7</td>
</tr>
<tr>
<td>Ignition power (*)</td>
<td>Permitted value</td>
<td>8.2 - 9.3</td>
</tr>
<tr>
<td>Minimum power (0%)</td>
<td>Nominal value</td>
<td>8.8</td>
</tr>
<tr>
<td>Minimum power (0%)</td>
<td>Permitted value</td>
<td>8.2 - 9.3</td>
</tr>
</tbody>
</table>

(*) Automatically calculated from the PCB

Chimney Sweep Function enables boiler to generate maximum heating power.

After activation, boiler power % can be adjusted from minimum (0%) to maximum (100%) in DHW mode.

A. Press and hold \(\text{On} \) and \(\text{Off} \) at the same time for 6 seconds. When the function is enabled, displays shows "On" for few seconds followed by program row "303" alternating with % of boiler power.

B. Press \(\text{On} \) \(\text{On} \) to gradually adjust power (increments of 1%).

C. To exit press and hold, \(\text{Off} \) \(\text{Off} \) and \(\text{On} \) \(\text{On} \) power/reset buttons, for at least 6 seconds.

D. If value of \(\text{CO}_2 - \text{O}_2 \) is different, check the electrodes and their relative distances. See Figure 11-1.

If necessary, replace electrodes and position them correctly. If problem persists, use "COMBUSTION ADJUSTMENT FUNCTION (\(\text{CO}_2 \) %)". See Section 11 General Maintenance, Figure 11-1 Electrodes. If problem persists, use Section 9.8 Automatic Calibration Function, and Section 9.9 Manual Calibration Function.

NOTICE

- Press \(\text{Off} \) \(\text{Off} \) to display instantaneous flow temperature for 15 seconds.
- Use a regularly calibrated combustion analyzer for combustion analysis.
- During normal operation boiler performs combustion control cycles. In this phase CO values higher than 400 ppm can occur for brief periods of time.

9.13 Combustion Adjustment Function (\(\text{CO}_2 \) %)

This function sets out to partially adjust the value of \(\text{CO}_2 \) %.

Use the following procedure:

1. Press buttons \(\text{On} \) \(\text{On} \) and \(\text{Off} \) \(\text{Off} \) together for at least 6 seconds. When the function is enabled, displays shows "On" for a few seconds followed by program row "304" alternated with the % of boiler power;

2. After burner is lit, boiler reverts to maximum DHW power (100). When display shows "100" it is possible to partially adjust value of \(\text{CO}_2 \) %;

3. Press \(\text{On} \) \(\text{On} \) and \(\text{Off} \) \(\text{Off} \). Display shows "00" alternating with function number "304" (\(\text{On} \) \(\text{On} \) flashes);

4. Press \(\text{On} \) \(\text{On} \) to to raise or lower the amount of \(\text{CO}_2 \) (from -0.3% to + 0.3%);

5. Press \(\text{Off} \) \(\text{Off} \) to save new value. Power value "100" will show on display again. Boiler continues operating at maximum DHW power.

This procedure can be used to adjust \(\text{CO}_2 \) to ignition power and minimum power by pressing \(\text{On} \) \(\text{On} \) \(\text{Off} \) \(\text{Off} \) after performing step 5 above.

6. After saving the new value (step 5 above), press \(\text{On} \) \(\text{On} \) to set boiler to ignition power. Wait for value of \(\text{CO}_2 \) to stabilize. Adjust as described in step 4 of procedure (power value is a number <> 100 and <> 0). Repeat step 5 to save.

7. Press \(\text{On} \) \(\text{On} \) to adjust boiler to minimum power. Wait for value of \(\text{CO}_2 \) to stabilize. Go to step 4 to adjust (power value = 00);

8. Exit function by pressing \(\text{On} \) \(\text{On} \) and \(\text{Off} \) \(\text{Off} \) together for at least 6 seconds, see step 1.

9.14 Check Firing Rate

1. Measure input, if a gas meter is installed in the system.
 - Turn off gas to all other appliances.
 - Activate some heating zones to dissipate heat.
 - Set boiler on high fire using Chimney Sweep Function.
 - Use ½, 1 or 2 cu ft dial on gas meter. Measure time required for two or more complete revolutions. Measure time for one or more minutes.
 - Calculate input.
9.15 Parameter Settings
Program boiler electronic board parameters as follows:
- Press [1] and [2] together, hold them down for 6 seconds until program “P01” appears on the display alternated with the set value;
- Press [1] or [2] to scroll the list of parameters;

Further information in regards to parameters listed in the following table are supplied together with required accessories if necessary.

Table 9-2 Input Rate @ High Fire (MBH)

<table>
<thead>
<tr>
<th>Size</th>
<th>Approximate Rate @ 100% Fire (MBH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>93.5</td>
</tr>
<tr>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>165</td>
<td>164</td>
</tr>
<tr>
<td>205</td>
<td>205</td>
</tr>
</tbody>
</table>

For Natural Gas:
\[
\text{Input (MBH)} = \frac{3600 \times \text{cu ft}}{\text{seconds}}
\]

Example: Natural Gas - Gas flow from Meter = 2 cu ft
Measured time = 72 seconds
\[
= \frac{3600 \times 2 \text{ cu ft}}{72 \text{ seconds}} = 100 \text{ MBH}
\]

For Propane (LP):
\[
\text{Input (MBH)} = \frac{9160 \times \text{cu ft}}{\text{seconds}}
\]

For Metric formulas- See Glossary

2. Compare measured input to table below. If calculated input is not in range given in Table 9-2 check firing rate again after setting the combustion following steps in section 9.12.

Notice

Important! Record any changes made to Parameters on chart found on Page 46 of the Application Guide supplied with your boiler.

9.16 Description Of Parameters: Factory Settings

<table>
<thead>
<tr>
<th></th>
<th>FACTORY SETTINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01</td>
<td>DHW Fast Modulation</td>
</tr>
<tr>
<td>00</td>
<td>Standard Modulation - on DHW call for heat 10 seconds stabilization time before modulation</td>
</tr>
<tr>
<td>01</td>
<td>Fast Modulation - on DHW call for heat 5 seconds stabilization time before modulation</td>
</tr>
<tr>
<td>P02</td>
<td>Gas used</td>
</tr>
<tr>
<td>00</td>
<td>Gas A (Natural Gas)</td>
</tr>
<tr>
<td>01</td>
<td>Gas E (LPG Gas)</td>
</tr>
<tr>
<td>P03</td>
<td>Hydraulic system</td>
</tr>
<tr>
<td>00</td>
<td>instantaneous appliance</td>
</tr>
<tr>
<td>03</td>
<td>instantaneous appliance with pre-heat function</td>
</tr>
<tr>
<td>04</td>
<td>heating only appliance with DHW thermostat</td>
</tr>
<tr>
<td>05</td>
<td>appliance with external storage indirect tank</td>
</tr>
<tr>
<td>08</td>
<td>heating only appliance</td>
</tr>
<tr>
<td>13</td>
<td>instantaneous appliance with pre-heat function for solar application</td>
</tr>
<tr>
<td>P06</td>
<td>Outdoor temperature sensor input configuration</td>
</tr>
<tr>
<td>00</td>
<td>with outdoor temperature sensor connected, external temperature value has influence to calculate heating flow temperature set-point</td>
</tr>
<tr>
<td>01</td>
<td>with outdoor temperature sensor connected, display shows external temperature value (no influence)</td>
</tr>
<tr>
<td>02...05</td>
<td>no function is associated</td>
</tr>
<tr>
<td>P07</td>
<td>Temperature set-point setting OT / RT (Open Therm / Room Thermostat 120V~)</td>
</tr>
<tr>
<td>00..02</td>
<td>No function is associated</td>
</tr>
<tr>
<td>03</td>
<td>This is an input contact for CH request (e.g. trigger phone). When contact CN2 is closed and Room Thermostat (RT) requiring heat switches burner on. Note: verify heating mode is enabled (winter or heat only mode)</td>
</tr>
<tr>
<td>04</td>
<td>This is an input contact for Low Temperature Thermostat (e.g. floor heating system). When Low Temperature Thermostat connected on CN2 cuts out, burner switches off and display shows E178 anomaly. Note: verify heating mode is enabled (winter or heat only mode)</td>
</tr>
<tr>
<td>05</td>
<td>This is an input contact for external DHW recirculation pump. When contact CN2 is closed the pump runs for a specific period. To enable input it is necessary to set parameter P04 or P05 = 08 and P69 = 05. Pump will run at P19 minutes (Summer/Winter mode or Only Winter mode) or P19/2 minutes (only Summer mode).</td>
</tr>
<tr>
<td>P09</td>
<td>Hydraulic Component Setting</td>
</tr>
<tr>
<td></td>
<td>Default 01</td>
</tr>
<tr>
<td>P10</td>
<td>Heating set-point setting OT / RT (Open Therm / Room Thermostat 120V~)</td>
</tr>
<tr>
<td>00</td>
<td>with Remote Control (RC) connected, temperature request is RC set-point</td>
</tr>
<tr>
<td>01</td>
<td>Temperature Request is highest set point between RC and PCB</td>
</tr>
<tr>
<td>02</td>
<td>Temperature request is RU setpoint. The RT enable the gas boiler operates</td>
</tr>
</tbody>
</table>

Parameters continued on next page
9 - START UP PROCEDURE

9.16 Description Of Parameters: Factory Settings conti.

<table>
<thead>
<tr>
<th>P11..P12</th>
<th>Manufacturer information</th>
</tr>
</thead>
<tbody>
<tr>
<td>P13</td>
<td>Max. heating output (0-100%)</td>
</tr>
<tr>
<td>P14</td>
<td>DHW max. output (0-100%)</td>
</tr>
<tr>
<td>P15</td>
<td>Min. heating output (0-100%)</td>
</tr>
<tr>
<td>P16</td>
<td>Maximum CH set-point (°C)</td>
</tr>
<tr>
<td></td>
<td>00 = 176°F (80°C)</td>
</tr>
<tr>
<td></td>
<td>01 = 113°F (45°C)</td>
</tr>
<tr>
<td></td>
<td>Selectable Range 20-80 = (20°C to 80°C) 68°F to 176°F</td>
</tr>
<tr>
<td>P17</td>
<td>Pump overrun time in heating mode (01-240 minutes)</td>
</tr>
<tr>
<td>P18</td>
<td>CH mode burner ignition delay after burner off due to water temperature exceeding limit setting with a continuous call for heat</td>
</tr>
<tr>
<td>P19</td>
<td>Manufacturer information</td>
</tr>
<tr>
<td>P20</td>
<td>Pump overrun time in DHW mode (seconds)</td>
</tr>
<tr>
<td>P21</td>
<td>Anti-legionellosis function</td>
</tr>
<tr>
<td></td>
<td>00 = Disabled -</td>
</tr>
<tr>
<td></td>
<td>01 = Enabled</td>
</tr>
<tr>
<td>P22</td>
<td>Manufacturer information</td>
</tr>
<tr>
<td></td>
<td>(set '22' to display parameters 42 and above)</td>
</tr>
<tr>
<td>P23</td>
<td>Maximum DHW set-point temperature 113°-140°F (45°-60°C), Default 49 = 120°F</td>
</tr>
<tr>
<td>P24</td>
<td>Manufacturer information</td>
</tr>
<tr>
<td>P25</td>
<td>No water safety device</td>
</tr>
<tr>
<td>P26..P31</td>
<td>Manufacturer information</td>
</tr>
<tr>
<td>P32..P41</td>
<td>Diagnostics (See SERVICE Instructions)</td>
</tr>
<tr>
<td>P44</td>
<td>Temperature unit setting</td>
</tr>
<tr>
<td></td>
<td>00 = °C</td>
</tr>
<tr>
<td></td>
<td>01 = °F</td>
</tr>
<tr>
<td>P67</td>
<td>O/T/R (Open Therm / Room Thermostat) selection.</td>
</tr>
<tr>
<td></td>
<td>0 = Plug and Play</td>
</tr>
<tr>
<td></td>
<td>1 = B&P</td>
</tr>
<tr>
<td></td>
<td>2 = OT (open therm STD)</td>
</tr>
</tbody>
</table>

The values listed below are factory defaults, there may be differences for each application.

<table>
<thead>
<tr>
<th>Model</th>
<th>100</th>
<th>115</th>
<th>125</th>
<th>150</th>
<th>165</th>
<th>205</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>Natural</td>
<td>LP</td>
<td>Natural</td>
<td>LP</td>
<td>Natural</td>
<td>LP</td>
</tr>
<tr>
<td>P70</td>
<td>Ignition Fan Speed**</td>
<td>Setting</td>
<td>35</td>
<td>35</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>RPM</td>
<td>3500</td>
<td>3500</td>
<td>3800</td>
<td>3800</td>
<td>4400</td>
</tr>
<tr>
<td>P71*</td>
<td>Maximum Fan Speed**</td>
<td>Setting</td>
<td>85</td>
<td>220</td>
<td>115</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>RPM</td>
<td>5850</td>
<td>7200</td>
<td>6150</td>
<td>7200</td>
<td>6050</td>
</tr>
<tr>
<td>P72</td>
<td>Minimum Fan Speed**</td>
<td>Setting</td>
<td>50</td>
<td>55</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>RPM</td>
<td>1250</td>
<td>1300</td>
<td>1150</td>
<td>1150</td>
<td>1180</td>
</tr>
</tbody>
</table>

To calculate fan speeds:

- **P70 x 100**
- **(P71 x 10) + 5000**

* For 165 Model: (P71 x 10) + 4500

- **(P72 x 10) + 750**

P73

Boiler Power Selection

- 1 = 115
- 2 = 100
- 3 = 150
- 10 = 125
- 11 = 205
- 12 = 165

Default depends on firing rate of boiler as listed.

P74

CH mode burner ignition delay after burner off due to water temperature exceeding limit setting with an interrupted call for heat

Range = 0-255 seconds (0-4.25 min.)

0

P78

0-10V Input

- 0 = Disabled
- 1 = Temperature Setpoint (3V = minimum setpoint, 10V = maximum setpoint)
- 2 = Power Setpoint (3V = minimum power, 10V = maximum power)

0

P82

4 = Disabled

3 = Enabled 0-10V DC Input

4

NOTE: To scroll to parameter 42 and above it is necessary to set P22 to 22 before scrolling up to the parameter.

See Tables: Section 12.4 -Parameters for High Altitude
9.17 Adjusting Maximum Heating Power

Maximum boiler heating power can be reduced to suit requirements of heating system it serves.

Table showing parameter P_{13} values according to desired maximum power model is shown for each single boiler.

To access and edit P_{13} values, proceed as described in Section 9.15 Parameter Settings.

Boiler Model - PARAMETER P13 (%)/ Heating Output

<table>
<thead>
<tr>
<th>Btu/h</th>
<th>kW</th>
<th>DCB-100</th>
<th>DCC-115</th>
</tr>
</thead>
<tbody>
<tr>
<td>17,060</td>
<td>5.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20,473</td>
<td>6.0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>23,885</td>
<td>7.0</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>27,297</td>
<td>8.0</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>30,709</td>
<td>9.0</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>34,121</td>
<td>10.0</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>40,946</td>
<td>12.0</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>47,770</td>
<td>14.0</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>54,594</td>
<td>16.0</td>
<td>45</td>
<td>35</td>
</tr>
<tr>
<td>61,419</td>
<td>18.0</td>
<td>57</td>
<td>45</td>
</tr>
<tr>
<td>68,243</td>
<td>20.0</td>
<td>68</td>
<td>55</td>
</tr>
<tr>
<td>75,067</td>
<td>22.0</td>
<td>80</td>
<td>65</td>
</tr>
<tr>
<td>81,891</td>
<td>24.0</td>
<td>95</td>
<td>75</td>
</tr>
<tr>
<td>85,400</td>
<td>25.0</td>
<td>100</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Btu/h</th>
<th>kW</th>
<th>DCB-125</th>
<th>DCC-115</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,400</td>
<td>6.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23,800</td>
<td>7.0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>27,200</td>
<td>8.0</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>30,700</td>
<td>9.0</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>34,100</td>
<td>10.0</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>40,900</td>
<td>12.0</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>47,700</td>
<td>14.0</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>54,500</td>
<td>16.0</td>
<td>37</td>
<td>29</td>
</tr>
<tr>
<td>61,400</td>
<td>18.0</td>
<td>44</td>
<td>35</td>
</tr>
<tr>
<td>68,200</td>
<td>20.0</td>
<td>52</td>
<td>41</td>
</tr>
<tr>
<td>75,100</td>
<td>22.0</td>
<td>59</td>
<td>47</td>
</tr>
<tr>
<td>81,900</td>
<td>24.0</td>
<td>67</td>
<td>53</td>
</tr>
<tr>
<td>88,700</td>
<td>26.0</td>
<td>74</td>
<td>59</td>
</tr>
<tr>
<td>95,500</td>
<td>28.0</td>
<td>80</td>
<td>65</td>
</tr>
<tr>
<td>102,300</td>
<td>30.0</td>
<td>88</td>
<td>71</td>
</tr>
<tr>
<td>109,200</td>
<td>32.0</td>
<td>96</td>
<td>75</td>
</tr>
<tr>
<td>112,600</td>
<td>33.0</td>
<td>100</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Btu/h</th>
<th>kW</th>
<th>DCB-165</th>
<th>DCC-205</th>
</tr>
</thead>
<tbody>
<tr>
<td>27,400</td>
<td>8.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31,300</td>
<td>9.2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>35,800</td>
<td>10.5</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>41,300</td>
<td>12.1</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>46,500</td>
<td>13.6</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>55,900</td>
<td>16.4</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>65,700</td>
<td>19.3</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>74,500</td>
<td>21.8</td>
<td>37</td>
<td>29</td>
</tr>
<tr>
<td>83,200</td>
<td>24.4</td>
<td>44</td>
<td>35</td>
</tr>
<tr>
<td>92,300</td>
<td>27.0</td>
<td>52</td>
<td>41</td>
</tr>
<tr>
<td>101,900</td>
<td>29.9</td>
<td>59</td>
<td>47</td>
</tr>
<tr>
<td>110,000</td>
<td>32.2</td>
<td>67</td>
<td>53</td>
</tr>
<tr>
<td>118,000</td>
<td>34.8</td>
<td>74</td>
<td>59</td>
</tr>
<tr>
<td>127,000</td>
<td>37.2</td>
<td>80</td>
<td>65</td>
</tr>
<tr>
<td>136,900</td>
<td>40.1</td>
<td>88</td>
<td>71</td>
</tr>
<tr>
<td>145,300</td>
<td>42.6</td>
<td>96</td>
<td>75</td>
</tr>
<tr>
<td>151,700</td>
<td>44.4</td>
<td>100</td>
<td>80</td>
</tr>
</tbody>
</table>
10 - OPERATING INSTRUCTIONS

FOR YOUR SAFETY READ BEFORE OPERATING

⚠️ WARNING

If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

- This appliance is equipped with an ignition device which automatically lights burner. **Do NOT try to light this burner by hand.**
- Before operating smell all around appliance area for gas. Be sure to smell next to floor because some gas is heavier than air and will settle to the floor.
- **Use only your hand to turn the gas shutoff valve.** Never use tools. If valve will not turn by hand, do not try to repair it, call a qualified service technician. Force or attempted repair may result in fire or explosion.
- **Do not use this appliance if any part has been under water.** Immediately call a qualified service technician to inspect appliance and to replace any part of control system and any gas control which has been under water.

⚠️ CAUTION

WHAT TO DO IF YOU SMELL GAS

- Do not try to light any appliance.
- Do not touch any electrical switch; do not use any phone in your building.
- Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions.
- If you cannot reach your gas supplier, call the fire department.

10.1 Testing For Gas Leaks And Purging The Gas Supply

- With boiler gas service cock closed (spindle flats at right angles to valve). Pressure test gas supply and inlet pipe work connection to boiler gas service cock for soundness.
- Loosen screw of pressure inlet gas test port on gas valve. See figure 9-3 Gas Valve. Verify gas supply is ON. Open boiler service cock to purge.
- Retighten test port screw and test for gas leaks. Close boiler gas shutoff device.

10.2 Boiler Operation

Domestic hot water supply always takes priority over central heating.

Demand for hot water required during central heating period, boiler automatically switches to hot water mode until demand is satisfied i.e. storage water is to required temperature.

This interruption in central heating is only when demand for hot water is present and should not be noticed by the User.

10.3 Central Heating Mode

1. With demand for heating, pump circulates water through the primary circuit.
2. After a 3 minute anti-short cycling stage the combustion fan comes on at ignition speed, closing the air pressure switch, allowing power to spark generator and gas valve, creating ignition in the combustion chamber.
3. Flame sensor acknowledges presence of flame in combustion chamber sending a signal to the control board.
4. After initial stabilization period the control board monitors supply and return temperatures and modulates fan speed and gas rate accordingly.
5. Once boiler satisfies CH call for heat, the unit will shutdown and enter 3 minute anti-cycling mode. The boiler pump will operate for 3 minutes to dissipate any residual heat.

If there is a subsequent CH call for heat, boiler will wait 3 minutes to operate.

10.4 Domestic Hot Water Mode

- When a tap is opened and water flow is sensed by DHW flow switch, domestic hot water call for heat is initiated.
- Water in the boiler is diverted from central heating system to domestic hot water heat exchanger to heat incoming domestic water.
- Combustion fan will come on at ignition speed, closing the air pressure switch, allowing power to flow to spark generator and gas valve, creating ignition in the combustion chamber.
- Flame sensor will acknowledge presence of flame in combustion chamber and send a signal to the control board.
- After initial stabilization period, the control board monitors supply and return temperatures and modulates fan speed and gas rate accordingly.
- Domestic call for heat ends when tap is closed and DHW flow switch does not see water flow.
- There is no anti-cycling mode after a DHW call for heat.
10.5 Frost Protection
Boiler monitors supply and return water temperatures to enable frost protection which automatically turns boiler and pump on.
If water in boiler falls below 41°F (5°C), providing boiler is connected to power, boiler will operate until water temperature in the system reaches approximately 86°F (30°C).
Frost protection is for boiler only and not for complete Central Heating System.

10.6 Pump
If electricity is connected to the boiler, regardless if power is "On" or "Off" and has not operated for 24 hours for heating or hot water, boiler pump will operate automatically for one minute every 24 hours.

10.7 Low Water Pressure Sensor (Internal)
Device protects primary exchanger from damage. It will not allow boiler to run in a LOW water pressure situation. Low water condition occurs when water pressure drops below 7.0 psi (0.5 bar).
11.1 Beginning of Each Heating Season

- Check boiler area is free from combustible materials, gasoline, and other flammable vapors and corrosive liquids.

- Visually inspect combustion air and vent piping for proper operation. Check for and remove any obstruction to flow of combustion air or vent gases. Immediately repair or replace pipe showing deterioration or leakage. Reassemble per instructions in section 5. Ensure proper reassembly and resealing of system.

- Visually inspect condensate drain line for proper operation. Checking for deteriorated or plugged condensate drain line. Verify condensate trap drains freely and clean as required.

- Test safety relief valve for proper operation. Refer to valve manufacturer's instructions packaged with relief valve.

- Examine heat exchanger, burner, condensate lines, and clean (if necessary) by following instructions in section 11.3 - Component Replacement And Cleaning.

- Circulator pump and combustion air blower motor furnished with boiler are permanently lubricated from factory and require no further lubrication. Lubricate field sourced pumps and/or motors according to pump and/or motor manufacturer's instruction.

- Check following components are operating properly and are free of blockages or obstructions:
 - air vent;
 - check venturi air inlet for blockage and clean as required;
 - verify pressure test port cap and combustion test port caps are in place
 - verify supply and return sensors are properly clipped to pipes as close to heat exchanger as possible;
 - Check boiler for any sign of leaks.

- Check external low water cutoff operation (if installed).
 - Check operation by pressing test button on low water cutoff.
 - "Low Water" LED on the external LWCO should illuminate and boiler should shut down.
 - Every 5 years remove low water cutoff. Reinstall after cleaning.
 - Every 10 years replace low water cutoff.

- Visual inspection of flame through sight glass. Burner should be fully illuminated.

- Check heating system expansion tank.

Note

A Heat Exchanger cleaning kit is available for annual service of the boiler. See repair parts manual for part number.

Verify proper operation after servicing.

Perform regular service and maintenance by qualified service agency at least once every 12 months to assure safe, trouble free operation and maximum efficiency.

Note

Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation.

DANGER

Before servicing, turn off electrical power to boiler at service switch. Close manual gas valve to turn gas supply OFF to boiler. Failure to comply will result in death or serious injury.

CAUTION

Before servicing, turn off electrical power to boiler at service switch. Close manual gas valve to turn gas supply OFF to boiler. Failure to comply will result in death or serious injury.

Note

Verify proper operation after servicing.

Perform regular service and maintenance by qualified service agency at least once every 12 months to assure safe, trouble free operation and maximum efficiency.

Note

A Heat Exchanger cleaning kit is available for annual service of the boiler. See repair parts manual for part number.

Note

Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation.
11 - GENERAL MAINTENANCE AND CLEANING

11.2 Maintenance And Routine Servicing
Check and service boiler as necessary. Frequency of servicing will depend upon installation conditions and usage, manufacturer recommends annually.

- Check flue terminal outside and ensure it is not blocked.
- Operate boiler. Check operation of boiler's controls.
- Ensure all system connections and fittings are sound. Correct any joints and fittings that maybe leaking.
- Follow safety valve manufacturer recommendations for service.

To ensure boiler operates at peak efficiency, following checks must be performed every year:

- check appearance and tightness of gas and combustion circuit gaskets
- check condition and position of ignition and flame sensing electrodes
- check condition of burner and its connection to aluminum front plate
- check for dirt in combustion chamber. Use vacuum cleaner for this cleaning operation
- check gas valve is calibrated correctly using combustion analyzer
- check there is no dirt in condensate trap
- check central heating system pressure
- check expansion tank pressure
- check vent system, clean if necessary

Record details and maintain service history.

11.3 Component Replacement And Cleaning
1. Remove any deposits from heat exchanger using suitable soft brush. Do not use brush with metallic bristles.
2. Check condition of the combustion chamber insulation panels. Any damaged panels must be replaced.
3. Check condition of burner. Clean burner with soft brush and check flame ports are clear. Blockages may be removed with stiffer brush. Do not use a brush with metallic bristles this might damage the burner.
4. Remove any fallen deposits from bottom of inner case.
5. Check condition of electrodes.
6. Check spark gap, positioning and height of electrodes.
7. Check fan impeller is clean and free to rotate.
11 - GENERAL MAINTENANCE AND CLEANING

DANGER
Before servicing, turn off electrical power to boiler at service switch. Close manual gas valve to turn gas supply OFF to boiler. Failure to comply will result in death or serious injury.

11.4 Draining the Boiler
- turn boiler off
- isolate electrical supply
- close boiler gas service cock
- allow boiler to cool
- drain boiler through onboard drain if available or external drain valve.

11.5 Draining the Heating Circuit
- Follow all steps in 11.4.
- Close central heating flow and return valves.
- Connect suitable pipe to drain point.
- Route it to suitable container.
- Open drain tap.

11-1 ELECTRODES
11.6 Hydraulic Unit (DHW)
For special areas, where water is harder than 200 ppm or 12 grains/gallon, install polyphosphate dispenser or equivalent treatment system, compliant with current regulations.

11.7 Cleaning The Cold Water Filter
Boiler is fitted with cold water filter located on DHW hydraulic assembly (B). To clean:
- Drain domestic hot water system. (C - 115 & 150)
- 165 Drain is field supplied/installed.
- Remove nut on DHW priority sensor unit using 18 mm wrench. (B)
- Pull out flow sensor and its filter.
- Remove any impurities.

NOTICE
When replacing and/or cleaning “O-rings” on hydraulic assembly (DHW), use only Molykote 111 as a lubricant, not oil or grease.

11.8 Final Commissioning
- Allow heating system to heat. Balance the system to achieve temperature difference across heating supply and return pipes at the boiler.
- Check system for proper volume and pressure. See page 4 for acceptable volume and pressure.
- Turn off boiler.
- Thoroughly flush water pipe work. Clean filters in heating return and supply water isolating valves.
- Repressurize the system.

11.9 Final Assembly
- Place front jacket in position over boiler. Secure in position at top using screws previously removed.
- If boiler is to be left in service with the User, set controls and room thermostat.
- If boiler is not to be handed over immediately, close boiler gas service valve and turn off electrical supply.
- If there is possibility of boiler being left during frost conditions drain boiler and system. See section 11: Component Replacement Or Periodic Cleaning. Manufacturer recommends attaching a label to the boiler drawing attention to the fact that the system has been drained.
11.10 User Information
Advertise and demonstrated to User the following important information:

A. How to light and turn off boiler. How to operate system controls.
B. Importance of annual servicing of boiler to ensure safe and efficient operation.
C. Servicing or replacement of parts shall be carried out by a qualified personnel.
D. Ensure boiler controls and room thermostat, if fitted, are set to User's requirements.
E. Tell User about sealed system pressure.
F. Tell User if display is active and boiler has not operated for 24 hours for heating or hot water, the pump will automatically operate for 1 minute.
G. Explain to User an internal frost thermostat is fitted in boiler, and electrical supply to boiler must be left on for thermostat to operate.
H. Show User position of pressure relief valve discharge pipe.
I. Leave this Installation, Operation and Maintenance Manual with User for use on future calls.

11.11 Safety Flue Thermostat - DO NOT disable this safety device.
Safety Flue Thermostat found on the flue inside the boiler, interrupts flow of gas to the burner if the temperature overheats.
After verifying the cause of the trip, press for about 2 seconds.

11.12 Flue Pressure Switch (125-150 Only) DO NOT disable this safety device.
This device, positioned inside the sealed chamber, interrupts flow of gas to the burner if flue pressure exceeds 1.6 in w.c. (4 mbar).
Verify if vent is blocked before resetting the boiler.

11.13 Replacement Parts
Perform Automatic Calibration procedure described in section 9.8 if one or more of the following components are replaced. Check and adjust CO2% value as indicated in the Combustion Table.
Components replaced:
- Primary heat exchanger
- Fan
- Gas valve
- Gas orifice
- Burner
- Flame sensing electrode
- Control Parameter Key

NOTICE
When servicing the appliance, check the condition and position of flame sensing electrode and replace it if necessary.
12 - RATINGS AND CAPACITIES

12 TECHNICAL DATA

12.1 Ratings and Capacity

<table>
<thead>
<tr>
<th>Model Number</th>
<th>CH Input, MBH</th>
<th>CH Heating Capacity, MBH</th>
<th>Net AHRI Rating Water, MBH</th>
<th>AFUE%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum</td>
<td>Minimum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCB-100</td>
<td>93.5</td>
<td>16.6</td>
<td>85.4</td>
<td>74</td>
</tr>
<tr>
<td>DCC-115</td>
<td>93.5</td>
<td>16.6</td>
<td>85.4</td>
<td>74</td>
</tr>
<tr>
<td>DCB-125</td>
<td>125</td>
<td>22</td>
<td>113</td>
<td>98</td>
</tr>
<tr>
<td>DCC-150</td>
<td>125</td>
<td>22</td>
<td>113</td>
<td>98</td>
</tr>
<tr>
<td>DCC-165</td>
<td>164</td>
<td>29.5</td>
<td>153</td>
<td>133</td>
</tr>
<tr>
<td>DCC-205</td>
<td>164</td>
<td>29.5</td>
<td>153</td>
<td>133</td>
</tr>
</tbody>
</table>

(1) 1000 Btu/hr (British Thermal Units Per Hour)
(2) Heating Capacity and AFUE (Annual Fuel Utilization Efficiency) are based on DOE (Department of Energy) test procedures.
(3) Net AHRI Ratings based on piping and pickup allowance of 1.15. Contact Technical Support before selecting boiler for installations having unusual piping and pickup requirements, such as intermittent system operation, extensive piping systems, etc.

*Max CH Supply temp 176° F (80°C)

12.2 Domestic Hot Water Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>DCC-115</th>
<th>DCC-150</th>
<th>DCC-205</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Ratings (MBH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>16.6</td>
<td>22</td>
<td>29.5</td>
</tr>
<tr>
<td>Max</td>
<td>115.5</td>
<td>153</td>
<td>205</td>
</tr>
<tr>
<td>Output Ratings (MBH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>15.3</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>Max</td>
<td>105.5</td>
<td>136</td>
<td>180</td>
</tr>
<tr>
<td>Domestic Water Pressure</td>
<td>2.9 psi (0.2 bar) - 116 psi (8.0 bar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Flow Rate</td>
<td>0.55 GPM</td>
<td>0.50 GPM</td>
<td></td>
</tr>
<tr>
<td>Maximum Flow Rate</td>
<td>2.64 gpm</td>
<td>3.50 gpm</td>
<td>5.00 gpm</td>
</tr>
<tr>
<td>Flow Rate 77°F (43°C) Temp. Rise</td>
<td>2.35 gpm</td>
<td>3.25 gpm</td>
<td>4.65 gpm</td>
</tr>
<tr>
<td>DHW Supply Connection Size</td>
<td>1/2” BSPT at boiler or 1/2” Copper Sweat**</td>
<td>1/2” NPT</td>
<td>3/4” NPT</td>
</tr>
<tr>
<td>Cold Water Input Connection Size</td>
<td>1/2” BSPT at boiler or 1/2” Copper Sweat**</td>
<td>1/2” NPT</td>
<td>3/4” NPT</td>
</tr>
</tbody>
</table>

*Max DHW temp 140° F (60° C)

**1/2” Copper stub adapters included with boiler
12.3 High Altitude Ratings

For elevations between 2000 ft (600 m) and 10,000 ft (3048 m), use the following information:

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Model Number</th>
<th>Input, MBH (KW)</th>
<th>Heating Capacity, MBH*</th>
<th>AFUE, %</th>
<th>Domestic Hot Water (DHW) Circuit**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum</td>
<td>Minimum</td>
<td></td>
<td></td>
<td>Max Input, MBH</td>
</tr>
<tr>
<td>2,000-4,500 ft</td>
<td>DCB-100</td>
<td>88.8</td>
<td>16.5</td>
<td>81.1</td>
<td>95.0</td>
</tr>
<tr>
<td>(600m-1350m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109.7</td>
</tr>
<tr>
<td></td>
<td>DCB-115</td>
<td>88.8</td>
<td>16.5</td>
<td>81.1</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td>DCB-125</td>
<td>113</td>
<td>101</td>
<td>95.0</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>DCB-150</td>
<td>113</td>
<td>101</td>
<td>95.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCC-165</td>
<td>147</td>
<td>137</td>
<td>95.0</td>
<td>184.5</td>
</tr>
<tr>
<td></td>
<td>DCC-205</td>
<td>147</td>
<td>137</td>
<td>95.0</td>
<td></td>
</tr>
<tr>
<td>4,501-6,500 ft</td>
<td>DCB-165</td>
<td>135</td>
<td>24.1</td>
<td>126</td>
<td>95.0</td>
</tr>
<tr>
<td>(1372 m -1981 m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>DCC-205</td>
<td>135</td>
<td>24.1</td>
<td>126</td>
<td>95.0</td>
</tr>
<tr>
<td>6,501-10,000 ft</td>
<td>DCB-165</td>
<td>113</td>
<td>20.3</td>
<td>105</td>
<td>95.0</td>
</tr>
<tr>
<td>(1982 m -3048 m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>DCC-205</td>
<td>113</td>
<td>20.3</td>
<td>105</td>
<td>95.0</td>
</tr>
</tbody>
</table>

* Max CH Supply temp 176° F (80° C) for DCB-125 and DCC-150
** DCC-150 Max DHW Flow rate 3.5 gpm (13.2 l/min)
** DCC-205 Max DHW flow rate 5.0 gpm (18.9 l/min)

12.4 High Altitude Chart

<table>
<thead>
<tr>
<th>GAS</th>
<th>Natural</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Altitude</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-2,000 ft [0-610 m]</td>
<td>2,000-10,000 ft [610-3,048 m]</td>
</tr>
<tr>
<td></td>
<td>Model</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>205</td>
</tr>
</tbody>
</table>

Parameter P71 High Fire Fan Speed

	100	Setting RPM	50	1,250	70	1450				
	115	Setting RPM	55	1,300	55	1,300				
	125	Setting RPM	40	1150	25	1000				
	150	Setting RPM	40	1150	25	1000				
	165	Setting RPM	43	1180	60	1350	45	1200	60	1350
	205	Setting RPM	40	1150	60	1350	45	1200	60	1350

Parameter P72 Low Fire Fan Speed

CO Limit < 200 ppm
12.5 Available Pump Head For Central Heating

This is a high static head pump fit for installation on any type of single or double-pipe heating systems. The automatic air valve incorporated in the pump allows quick venting of the heating system.

<table>
<thead>
<tr>
<th>Q</th>
<th>WATER FLOW RATE</th>
<th>MIN</th>
<th>Minimum speed of modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>HEAD</td>
<td>MAX</td>
<td>Maximum speed of modulation</td>
</tr>
</tbody>
</table>

![Graph showing water flow rate and head](image-url)
13.1 Error Messages and Resetting the Boiler

<table>
<thead>
<tr>
<th>Error</th>
<th>Error Description</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>09</td>
<td>Gas valve connection fault</td>
<td>Check cable PCB/gas valve and gas valve plug</td>
</tr>
<tr>
<td>10</td>
<td>Outdoor sensor fault</td>
<td>Check sensor and cable</td>
</tr>
<tr>
<td>15</td>
<td>Gas valve command fault</td>
<td>Verify all cables. Replace PCB.</td>
</tr>
<tr>
<td>20</td>
<td>Central Heating NTC sensor fault</td>
<td>Check sensor and cable</td>
</tr>
<tr>
<td>28</td>
<td>Flue NTC heat exchanger sensor fault</td>
<td>Check sensor and cable</td>
</tr>
<tr>
<td>40</td>
<td>Return NTC sensor fault</td>
<td>Check sensor and cable</td>
</tr>
<tr>
<td>50</td>
<td>Domestic Hot Water NTC sensor fault</td>
<td>Check sensor and cable</td>
</tr>
<tr>
<td>53</td>
<td>Obstruction in flue pipe, Recirculation, Out of Calibration, Poor gas quality</td>
<td>Check for obstruction in flue pipe. Check gas pressure, check gas orifice. Check for recirculation, recalibrate, check gas quality.</td>
</tr>
<tr>
<td>55</td>
<td>PCB not programmed</td>
<td>Follow instructions provided with control board replacement kit, call technical service for assistance.</td>
</tr>
<tr>
<td>E72/E92</td>
<td>Combustion test alarm during commissioning / calibration</td>
<td>Check flame sensor, check for obstruction in flue pipe, check for recirculation, check gas pressure, check gas orifice, check gas quality. Perform automatic calibration function and manual calibration function if necessary.</td>
</tr>
<tr>
<td>78</td>
<td>Minimum gas valve IMOD current</td>
<td>Check gas supply pressure. Check the correct position and integrity of the sensing electrode. Check and clean the igniter and sensing electrode if necessary. Check flue recirculation.</td>
</tr>
<tr>
<td>79</td>
<td>Maximum gas valve IMOD current</td>
<td>Check Combustion is within specifications in IOM. Auto calibrate, manual calibrate if necessary. Replace components if all else fails.</td>
</tr>
<tr>
<td>E83</td>
<td>OT Communication Failure</td>
<td>Check OT connection, remove power, reconnect OT connections, if problem persists replace service key.</td>
</tr>
<tr>
<td>84-85</td>
<td>Communication problem between boiler board and control unit</td>
<td>Probable short circuit on wiring. Check cable between control unit and boiler</td>
</tr>
<tr>
<td>86-87</td>
<td>Pre-circulation alarm (temporary fault)</td>
<td>Check correct circulation of water and pump. Check supply and return wiring is correct.</td>
</tr>
<tr>
<td>109</td>
<td>Safety thermostat tripped due to over temperature (pump probably blocked or air in heating circuit)</td>
<td>Check safety thermostat and cable; check correct circulation of water and pump</td>
</tr>
<tr>
<td>110</td>
<td>Hydraulic pressure too high.</td>
<td>Relieve pressure via relief valve or drain. Ensure water feed is operating correctly.</td>
</tr>
<tr>
<td>117</td>
<td>Hydraulic pressure too low.</td>
<td>Refill heating system by opening cold water tap</td>
</tr>
<tr>
<td>125</td>
<td>No circulation of water (control performed via temperature sensor).</td>
<td>Check correct circulation of water and pump. Check correct connection of NTC sensor on pipe</td>
</tr>
<tr>
<td>128</td>
<td>Loss of flame 8 consecutive times after flame proving stage.</td>
<td>Check sensing electrode and cable, flue recirculation, electrical continuity between burner and ground, gas pressure, gas orifice. Perform automatic calibration and manual calibration function if necessary.</td>
</tr>
<tr>
<td>130</td>
<td>NTC flue sensor tripped due to over temperature</td>
<td>Check thermostat, correct circulation of water and pump. Check status of primary exchanger.</td>
</tr>
<tr>
<td>131</td>
<td>Thermo fuse tripped due to over temperature or wire harness disconnected from thermo fuse, off the board, or wire harness may be cut.</td>
<td>Check thermo fuse, correct circulation of water and pump. Check status of primary exchanger. Replace heat exchanger. Verify wire harness installation and continuity.</td>
</tr>
<tr>
<td>133</td>
<td>Ignition failure</td>
<td>Check correct operation of condensate trap. Check sensing electrode, spark electrode and cable. Check flue recirculation, electrical continuity between burner and ground. Check gas orifice and gas pressure. Perform automatic calibration and manual calibration function if necessary.</td>
</tr>
<tr>
<td>134</td>
<td>Gas supply valve blocked</td>
<td>Check gas pressure, sensing electrode, spark electrode and cable, replace PCB if it necessary.</td>
</tr>
</tbody>
</table>
13 - TROUBLE SHOOTING

13.1 Error Messages and Resetting the Boiler - continued

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Description</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>Internal error</td>
<td>Verify all cables. Replace PCB.</td>
</tr>
<tr>
<td>160</td>
<td>Fan fault</td>
<td>Check fan and cable</td>
</tr>
<tr>
<td>162/317</td>
<td>Incorrect power supply frequency.</td>
<td>Incorrect power supply frequency.</td>
</tr>
<tr>
<td>169</td>
<td>Flue pressure switch (contact open)</td>
<td>Check pressure switch and cable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check obstruction on flue pipe.</td>
</tr>
<tr>
<td>164/384</td>
<td>Fault flame (parasitic flame).</td>
<td>Check correct operation of T. gas valve.</td>
</tr>
<tr>
<td>165/385</td>
<td>Input voltage too low.</td>
<td>Check power supply</td>
</tr>
<tr>
<td>E178</td>
<td>Low return water temperature / anti-freeze function active</td>
<td>Check the return water sensor, check the circulator, check the correct circulation of the water. Boiler will exit status when condition is resolved.</td>
</tr>
</tbody>
</table>

To RESET boiler press button for at least 2 seconds.
For other error codes not described in table please contact manufacturer at 1(800) 325-5479.

<table>
<thead>
<tr>
<th>Anomalies Only Displayed in the Fault History</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E62 Anti-wind activation with increase of the minimum fan speed</td>
<td>Check the position of the terminal of the flue duct.</td>
</tr>
<tr>
<td>E63/E65 Combustion level out of range</td>
<td>Check flue recirculation and combustion levels.</td>
</tr>
<tr>
<td>E65 Maximum value of the speed reached / correction of the flame signal</td>
<td>Check flue recirculation on the flue duct.</td>
</tr>
<tr>
<td>E67 Anti-wind activation at maximum power</td>
<td>Check the position of the terminal of the flue duct.</td>
</tr>
<tr>
<td>E69 Combustion level out of range</td>
<td>Check flue recirculation and the combustion levels.</td>
</tr>
<tr>
<td>E70 Flame signal problem/micro interruption of the flame signal</td>
<td>Check cable and integrity of the sensing electrode, verify the continuity between burner and earth.</td>
</tr>
<tr>
<td>E73 Combustion adjustment / modified during operation</td>
<td>Review and monitor other codes such as E53 and E92</td>
</tr>
</tbody>
</table>
13 - TROUBLE SHOOTING

13.2 Anomalies Table for the Installer - Use this table to report the anomaly values.

<table>
<thead>
<tr>
<th>Anomaly Number</th>
<th>Anomaly Code</th>
<th>Consecutive Counter for the Same Anomaly</th>
<th>Number of Days Elapsed from the Anomaly Event</th>
<th>System Status</th>
<th>Phase Status</th>
<th>CH Flow Temperature Value During the Anomaly Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>P32</td>
<td>C00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P33</td>
<td>C01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P34</td>
<td>C02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P35</td>
<td>C03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P36</td>
<td>C04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P37</td>
<td>C05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P38</td>
<td>C06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P39</td>
<td>C07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P40</td>
<td>C08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P41</td>
<td>C09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYSTEM STATUS CODES

0: STANDBY
1: DHW "ON"
2: CHIMNEY SWEEP ACTIVE
3: CH "ON"
4: PREHEAT "ON"
5: CH NO FROST "ON"
6: DHW NO FROST "ON"
8: THERMOSTATIC POST- CIRCULATION

FAILURE CODE

- C00: LAST FAILURE
- C06: FIRST FAILURE
- C07: LAST LOCKOUT
- C09: FIRST LOCKOUT

NUMBER OF TIMES OCCURRED

PHASE STATUS CODES

0: STANDBY
1: PRE-PURGE
3: INTER-PURGE
4: SAFETY TIME
5: RUNNING
6: LOCKOUT
11: INTER-PURGE
15: POST VENTILATION
16: THERMOSTATIC POST VENTILATION
• **APPLIANCE** - Device to convert gas into energy; term includes any component, control, wiring, piping or tubing required to be part of the device.

• **ANSI** - American National Standards Institute, Inc. oversees creation and maintenance of voluntary consensus standards, including ANSI Z21.13/CSA 4.9: Gas-Fired Low Pressure Steam and Hot Water Boilers.

• **ASME** - Association of Mechanical Engineers
 Establishes rules of safety governing the design, fabrication, and inspection of boilers and pressure vessels, determining the MAWP of such vessels.

• **ASTM** - American Society for Testing and Materials.
 ASTM International is one of the largest voluntary standards development organizations in the world. Trusted source for technical standards for materials, products, systems, and services. Known for their high technical quality and market relevancy, ASTM International standards have an important role in information infrastructure that guides design, manufacturing and trade in the global economy.

• **AUTHORITY HAVING JURISDICTION** - Individual or organization adopting and enforcing codes, rules, and by-laws governing various concerns of community. Commonly referred to as 'final authority' for any matters relating to LIFE SAFETY and BUILDING CONSTRUCTION within a community.

• **BOILER** - Appliance intended to supply hot liquid for space-heating, processing or power purposes.

• **BTU** - Abbreviation for British Thermal Unit. Quantity of heat required to raise temperature of 1 pound of water 1°F.

• **BURNER** - Device for final conveyance of gas or mixture of gas and air, to combustion zone.

• **CALIBRATE** - Make fine adjustments or divide into marked intervals for optimal measuring.

• **COAXIAL VENTING** - Sharing the same center.

• **COMBUSTION** - Rapid oxidation of fuel gases accompanied by production of heat or heat and light. Complete combustion of fuel is possible only in presence of adequate supply of Oxygen.

• **COMBUSTIBLE MATERIAL** - Materials made of or surfaced with wood, compressed paper, plant fibers, or other materials capable of being ignited and burned. Such material shall be considered combustible even though flame-proofed, fire-retardant treated, or plastered.

• **COMBUSTION AIR** - Air that is drawn into an appliance to mix with fuel and support combustion.

• **CONDENSATE** - Liquid separated from flue gas due to reduction in temperature.

• **DIRECT VENT BOILER** - Boiler constructed and installed so all combustion air is derived directly from outdoors and all vent gases are discharged to outdoors.

• **DOMESTIC** - Relating to household usage as opposed to commercial usage.

• **DOMESTIC WATER** - Potable drinking water - tap water.

• **DRAFT** - Pressure difference causes gases or air to flow through a chimney, vent, flue or appliance.

• **FLA** - Full load amps.

• **FLUE** - Enclosed passageway for conveying combustion gases.

• **FLUE GASES** - Products of combustion plus excess air in appliance flues or heat exchanger.

• **GAS SUPPLIER** - Party that sells commodity of Natural Gas (Gas A) or LPG (Gas E).

• **HIGH-VOLTAGE** - Circuit involving potential of not more than 600 volts and having circuit characteristics in excess of those of low-voltage circuit.

• **HYSTERESIS (DIFFERENTIAL)** - Difference between the temperature at which the thermostat switches off - and the temperature at which it switches on again.

• **IGNITER** - Device utilizing electrical energy to ignite gas at main burner.

• **LEAK CHECK** - Operation performed on gas piping system to verify system does not leak.

• **LICENSED QUALIFIED INSTALLER / SERVICE TECHNICIAN** - Any individual, firm, corporation or company that either directly or through a representative is engaged in the installation, replacement, repair or servicing of gas piping, venting systems, appliances, components, accessories, or equipment, and whose representative is experienced and trained, in such work and has complied with the requirements of the authority having jurisdiction.

• **LOW WATER CUTOFF** - Device constructed to automatically cut off fuel supply when surface of water in boiler falls to lowest safe water level.

• **LOW-VOLTAGE** - Circuit involving potential of not more than 30 volts.
• **METRIC GAS METERS**

 Natural Gas
 \[\text{MBH} = \frac{127,116 \times \text{cu meters}}{\text{Seconds}} \]

 For example: Gas Meter measures 0.1 cubic Meters in 100 seconds
 \[\text{MBH} = \frac{127,116 \times 0.1}{100} = 127 \text{ MBH} \]

 Propane Gas (LP)
 \[\text{MBH} = \frac{383,482 \times \text{cu meters}}{\text{Seconds}} \]

• **NATIONAL BOARD OF BOILER AND PRESSURE VESSEL INSPECTORS** - Group composed of boiler and pressure vessel inspectors representing states, cities and provinces enforcing pressure equipment laws and regulations.

• **PRESSURE TEST** - Operation performed to verify gas tight integrity of gas piping following its installation or modification.

• **PURGE** - To free gas conduit of air or gas, or mixture of gas and air.

• **PURGE TIME** - Period of time intended to allow for dissipation of any unburned gas or residual products of combustion.

• **QUALIFIED AGENCY** - Any individual, firm, corporation, or company engaged in and responsible for:
 - Installation, testing, or replacement of gas piping, or connection, installation, testing, repair or servicing of appliances and equipment.
 - Experienced in such work.
 - Familiar with all precautions required.
 - Complies with all requirements of authority having jurisdiction.

• **SAFETY RELIEF VALVE** - Valve designed to relieve pressure in hot water supply system when pressure exceeds pressure capability of equipment.

• **SAFETY SHUTOFF DEVICE** - Device that will shut off gas supply to controlled burner in event source of ignition fails.

• **SEDIMENT TRAP** - Gas piping arrangement designed to collect any liquid or solid contaminant before reaching gas valve.

• **SERVICE** - Supply, installation, or maintenance of goods carried out by a Qualified Installer / Service Technician.

• **TWO PIPE SYSTEM** - Type of venting that allows for exhaust flue and intake air piping to be separated from each other. Fresh air may be drawn in at a different area from where flue terminal is located.

• **VENT** - Passageway used to convey flue gases from appliance vent connector to outdoors.

• **VENTING SYSTEM** - Continuous open passageway from of appliance vent connector to outdoors for purpose of removing flue or vent gases.

• **TWO PIPE SYSTEM** - Type of venting that allows for exhaust flue and intake air piping to be separated from each other. Fresh air may be drawn in at a different area from where flue terminal is located.

• **VENT** - Passageway used to convey flue gases from appliance vent connector to outdoors.

• **VENTING SYSTEM** - Continuous open passageway from of appliance vent connector to outdoors for purpose of removing flue or vent gases.
If any of the original wire as supplied with the appliance must be replaced, it must be replaced with wire having the same specifications.

SCHEMA DE CABLAGE
Si un câble d’origine, tel qu’il est fourni avec l’appareil, doit être changé, il doit être remplacé par un câble qui possède les mêmes caractéristiques.

LEGEND - LEGENDE:

1-Fuses 3,15 A
2-Supply 120V - 60Hz
3, 15 A
4-Fan
5-Safety Thermostat
6-Gas valve
7-Exchanger sensor
8-Water Pressure Switch
9-NTC return Sensor
10-NTC flow sensor
11-Remote User Interface or Open Therm
12-Prov. for Outside Sensor
13-Link 24V
14-Flame Sensing Electrode
15-Ignition Electrode
16-Three Way Valve
17-Pump
18-Flue Safety Thermostat
19-Link 0 - 10V
20-Condensate sensor
M1 - Main Power Terminal Board
M2 - Accessories Terminal Board

M1

1
2
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

R
Bl
Br
Bk
W
G
Gr
lB
G/Y
24 V Max 10 mA
0 - 10 V
120 V
INSTALLATION AND CHECK-OUT CERTIFICATE

Boiler Model ___________ Serial # ___________ Date Installed___________

Measured BTU/HR input____________

○ Installation instructions have been followed
○ Checkout procedure and adjustments performed
○ Maintenance and Service issues reviewed with owner/ maintenance person
○ Installation booklet affixed on or adjacent to boiler

Installer (Company) ____________________________

Address ____________________________

Phone ____________________________

Installer’s Name ____________________________

Signature ____________________________
IMPORTANT

In accordance with Section 325 (f) (3) of the Energy Policy and Conservation Act, this boiler is equipped with a feature that saves energy by reducing the boiler water temperature as the heating load decreases. This feature is equipped with an override which is provided primarily to permit the use of an external energy management system that serves the same function.

THIS OVERRIDE MUST NOT BE USED UNLESS AT LEAST ONE OF THE FOLLOWING CONDITIONS IS TRUE:

- An external energy management system is installed that reduces the boiler water temperature as the heating load decreases.
- This boiler is not used for any space heating
- This boiler is part of a modular or multiple boiler system having a total input of 300,000 BTU/hr or greater.
- This boiler is equipped with a tankless coil.
APPLICATION GUIDE
FOR USE WITH

HEATING ONLY - 100, 125, 165
&
COMBI - 115, 150, 205

This manual has been prepared for use with the appropriate Installation, Operation and Maintenance Manual.
TABLE OF CONTENTS

Important Safety Information ... 3
Labor Saving Piping Manifolds / Near Boiler Piping Connections ... 4
General Information - Hydronic Piping .. 6
General Information - Wiring ... 8
Piping and Wiring Diagrams
Piping Legend ..9
100, 125 W/Zone Circulators & DHW Tank - Piping Diagram ... 10
100, 125 W/Indirect Zone Circulators, DHW Tank W/Sensor - Wiring Diagram 11
100, 125 W/Indirect Zone Circulators & DHW Tank W/T-Stat - Wiring Diagram 12
100, 125 With Zone Valves & DHW Tank - Piping Diagram ... 13
100, 125 With Zone Valves, DHW Tank W/Sensor - Wiring Diagram .. 14
100, 125 Zone Valves, DHW Tank W/T-Stat - Wiring Diagram .. 15
165 With Zone Circulators - Piping Diagram ... 16
165 Indirect Zone Circulators, DHW Tank W/ T-Stat - Wiring Diagram ... 17
165 With Zone Valves - Piping Diagram ... 18
165 With Indirect Zone Valves, DHW Tank, Tank T-Stat - Wiring Diagram ... 19
115, 150 & 205 With Zone Circulators - Piping Diagram ... 20
115, 150 & 205 With Indirect Circulators - Piping Diagram ... 21
115, 150 & 205 With Zone Valves - Piping Diagram ... 22
115, 150 & 205 With Zone Valves - Wiring Diagram ... 23
External Buffer Tank - Piping Diagram ... 24
External Buffer Tank - Wiring Diagram .. 26
Optional Equipment ...29
Chart 1 -1k Ω Outdoor Air Sensor Data ... 29
Chart 2 -10k Ω Indirect Tank Sensor Data ... 29
Accessories ..30
Outdoor Temperature Sensor ... 30
Indirect Storage Tank Sensor & Thermostat .. 30
Wiring Diagrams
Single Zone Circulator Wiring Using Argo AR822-I ... 32
100 - Heat Only Wiring Diagram ... 33
125 - Heat Only Wiring Diagram ... 34
165 - Heat Only Wiring Diagram ... 35
115 - Combi Wiring Diagram ... 36
150 - Combi Wiring Diagram ... 37
205 - Combi Wiring Diagram ... 38
Altitude Effects On Boiler Performance .. 39
Application Table - Indirect Hot Water Tank Performance Chart ... 40
LWCO Wiring Diagram ... 41
Piping Diagram -LWCO Location ... 42
Low Water Cutoff - Detail .. 43
Error Code Table ... 44
Troubleshooting Chart ... 45
Fault Solution Sections ... 47
Parameter Change History .. 51
1. Become familiar with symbols identifying potential hazards.

This is the safety alert symbol. Symbol alerts you to potential personal injury hazards. Obey all safety messages following this symbol to avoid possible injury or death.

DANGER
Indicates a hazardous situation which, if not avoided, WILL result in death or serious injury.

WARNING
Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION
Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

2. General
Boiler installation shall be completed by qualified agency. See Installation, Operation & Maintenance Manual for additional information.

WARNING
Fire, explosion, asphyxiation and electrical shock hazard. Improper installation could result in death or serious injury. Read this manual and understand all requirements before beginning installation.

WARNING
Fire, Explosion, Asphyxiation, Electrical shock hazard! Flooding will result in damages such as electrical problems, corrosion, inoperative parts, mold and other unforeseen issues which can occur over time. Any equipment determined by a professional as damaged by a flood, defined as excess of water or other liquid, shall be replaced. Failure to follow these directions will result in a Hazardous Situation.

3. Installation shall conform to requirements of authority having jurisdiction or in absence of such requirements:
- **United States**
 - National Electrical Code, NFPA 70.
- **Canada**
 - Natural Gas and Propane Installation Code, CAN/CSA B149.1.
 - Canadian Electrical Code, Part I, Safety Standard for Electrical Installations, CSA C22.1

4. Where required by authority having jurisdiction, installation shall conform to Standard for Controls and Safety Devices for Automatically Fired Boilers, ANSI/ASME CSD-1. Additional manual reset low water cutoff and/or high limit may be required.

5. Requirements for Commonwealth of Massachusetts:
Boiler installation must conform to Commonwealth of Massachusetts code 248 CMR which includes but is not limited to:
- Installation by licensed plumber or gas fitter.
LEGEND

<table>
<thead>
<tr>
<th>Component</th>
<th>100/125</th>
<th>165</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Pressure Gauge</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>B Pressure Relief Valve</td>
<td>30.00 psi [2.11 bar]</td>
<td></td>
</tr>
<tr>
<td>C Heating return connection</td>
<td>3/4" [22.2mm]</td>
<td>1" [25.4mm]</td>
</tr>
<tr>
<td>E Gas shutoff connection</td>
<td>3/4" [22.2mm]</td>
<td></td>
</tr>
<tr>
<td>H Drain connection for condensate</td>
<td>13/16" [21mm] ID Hose</td>
<td>3/4 NPT</td>
</tr>
<tr>
<td>I Heating supply connection</td>
<td>3/4" [22.2mm]</td>
<td>1" [25.4mm]</td>
</tr>
<tr>
<td>J Optional Indirect DHW connection</td>
<td>3/4" [22.2mm]</td>
<td>na</td>
</tr>
</tbody>
</table>

MANIFOLD 100/125/115/150

1-1/2” Header

MANIFOLD 165

1-1/2” Header
LABOR SAVING PIPING MANIFOLDS / NEAR BOILER PIPING CONNECTIONS

LEGEND

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>115 & 150</th>
<th>205</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pressure Gauge</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>Pressure Relief Valve</td>
<td>30.00 psi [2.11 bar]</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>Heating return connection</td>
<td>3/4" [22.2mm]</td>
<td>1" [25.4mm]</td>
</tr>
<tr>
<td>D</td>
<td>Cold DHW inlet tap</td>
<td>1/2" [15.9mm]</td>
<td>3/4" NPT</td>
</tr>
<tr>
<td>E</td>
<td>Gas shutoff connection</td>
<td>3/4" [22.2mm]</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>Cold DHW inlet tap</td>
<td>1/2" [15.9mm]</td>
<td>na</td>
</tr>
<tr>
<td>G</td>
<td>DHW outlet</td>
<td>1/2" [15.9mm]</td>
<td>3/4" NPT</td>
</tr>
<tr>
<td>H</td>
<td>Drain connection for condensate</td>
<td>13/16" [21mm] ID Hose</td>
<td>3/4 NPT</td>
</tr>
<tr>
<td>I</td>
<td>Heating supply connection</td>
<td>3/4" [22.2mm]</td>
<td>1" [25.4mm]</td>
</tr>
<tr>
<td>J</td>
<td>Manifold</td>
<td>1-1/4" [31.75 mm]</td>
<td>1-1/2" [38.1 mm]</td>
</tr>
<tr>
<td>K</td>
<td>5 gpm DHW flow restrictor (Factory installed) (205 only)</td>
<td>na</td>
<td>3/4" [22.2mm]</td>
</tr>
</tbody>
</table>
General Information:

Piping installation, materials, and joining methods shall conform to requirements of authority having jurisdiction or in absence of such requirements:

- **USA** - National Fuel Gas Code, ANSI Z223.1/NFPA 54
- **Canada** - Natural Gas and Propane Installation Code, CAN/CSA B149.1

Manufacturer Requirements/Recommendations:

- **Manufacturer requires all domestic hot water (DHW) installations use an anti-scald valve.**
 Local codes may require additional equipment (expansion tank, relief valves, etc.) Select and size equipment to suit installation and meet code requirements.

- Use a water filter on potable incoming water supply line.

- Manufacturer recommends use of a magnetic dirt separator in the hydronic system where there are cast iron or steel components, or where the previous boiler was a cast iron heat exchanger. The abrasive, extremely fine sediment is difficult to remove and can deposit onto heat exchanger surfaces and accumulate in pump cavities causing reduced efficiency and premature wear.

- If the piping manifold is not used the ASME temperature and pressure relief valve and temperature and pressure gauge shall be installed to conform to requirements of the authority having jurisdiction. Refer to appropriate manufacturer instructions for installation requirements.

- If the piping manifold is not used, a primary / secondary piping arrangement is manufacturer required, unless using Buffer Tank. A maximum of 12 in of separation between the supply and return pipe (closely spaced tees) of the boiler shall be maintained. Limit combined supply and return pipe lengths to maximum linear lengths of 20 ft (6.1 m) between boiler and closely spaced tees, when minimum ¾ in NPT pipe size is used. Linear length may be increased if supply and return pipe size is increased to limit pressure drop.

- Manufacturer recommends installing a shutoff and purge valve to use during commissioning to ensure the boiler does not shut down due to over temperature. Do not install shutoff between boiler and LWCO or pressure relief valve.

WARNING

Burn and scald hazard! Manufacturer requires installation of field supplied anti-scald valve. Failure to follow these instructions could result in death or serious injury.

DANGER

Hot Water Can Scald!

Water heated to temperature for clothes washing, dish washing and other sanitizing needs can scald and cause permanent injury. Children, elderly, and infirmed or physically handicapped persons are more likely to be permanently injured by hot water. Never leave them unattended in bathtub or shower. Never allow small children to use a hot water tap or draw their own bath.

If anyone using hot water in the building fits the above description, or if state laws or local codes require certain water temperatures at hot water taps, you must take special precautions:

- Use lowest possible temperature setting.
- Install some type of tempering device, such as an automatic mixing valve, at hot water tap or water heater. Automatic mixing valve must be selected and installed according to manufacturer's recommendations and instructions.
- Water passing out of drain valves may be extremely hot. To avoid injury:
 - Make sure all connections are tight.
 - Direct water flow away from any person.
GENERAL INFORMATION - HYDRONIC PIPING

<table>
<thead>
<tr>
<th>Water Temperature Setting</th>
<th>1st Degree Burn Exposure Time For An Adult</th>
<th>2nd and 3rd Degree Burn Exposure Time For An Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>120° F</td>
<td>1 minute</td>
<td>5 minutes</td>
</tr>
<tr>
<td>130° F</td>
<td>5 seconds</td>
<td>30 seconds</td>
</tr>
<tr>
<td>140° F</td>
<td>2 seconds</td>
<td>5 seconds</td>
</tr>
<tr>
<td>150° F</td>
<td>1 second</td>
<td>1.5 seconds</td>
</tr>
<tr>
<td>160° F</td>
<td>Instantaneous</td>
<td>0.5 seconds</td>
</tr>
</tbody>
</table>

Note: Provided Wiring and Piping illustrations are meant to show system concepts only. Installer is responsible for all equipment required by authority having jurisdiction.

Note: Warning for Infants, Children, and Elderly: Great care must be taken when exposing the aforementioned groups to warm or hot water as they can be badly burned in exposure times less than half of the time for an adult.

Note: Arrange piping to prevent water dripping onto boiler.

All piping diagrams are shown with optional DHW Indirect Tank where applicable.

The Labor Saver Piping Manifold, which is supplied with each boiler, is shown with most of the following piping diagrams.

Use of Indirect Water Heater (DHW) Heating Only Boiler:

- **Note**: Sensors supplied with this boiler are proprietary to the manufacturer. Use of alternate sensors **WILL** diminish boiler performance.

- Use DHW sensor kit 550003189 to interface with boiler. Wire to M2 terminals #3 and #4. Exception: not applicable for the 165 model, use aquastat for indirect tank control.
- Use DHW sensor kit 550003189 to interface with boiler. Wire to M2 terminals #3 and #4. Exception: not applicable for the 165 model, use aquastat for indirect tank control.
- For heating only boilers with DHW outlet connection, see page 4, indirect water heater shall be piped utilizing the internal boiler pump. See pages 10 and 13.
- Locate tank as close to boiler as possible.
- See Indirect Tank Performance chart, page 40 of this manual.
- Change P03 on boiler for application as specified on the applicable wire diagram in this manual or Boiler Control Section 9 of Installation, Operation & Maintenance Manual supplied with the boiler.

Use of Buffer Tank:

- If using internal boiler pump, manifold shall be cut for use as shown on page 24, increase pipe size to match Buffer tank connections as shown.
- Locate tank as close to boiler as possible.
GENERAL INFORMATION - WIRING

Electrical Wiring Information:
All field wiring shall conform to the authority having jurisdiction or, in the absence of such requirements to:

- **USA**: National Electrical Code, ANSI/NFPA 70,

Wiring diagrams shown in this manual utilize ARGO™ Controls, the **optional** use of an Indirect Domestic Hot Water Tank, and **optional** use of a H2O Buffer Tank.

Reference the zone control manufacturer instruction manual for control operation and priority setting of DHW zones.

Note

DO NOT use 120 V thermostat terminals (M1- #1 and #2).

Note
Provided Wiring and Piping illustrations are meant to show system concepts only. Installer is responsible for all equipment required by authority having jurisdiction.

BOILER CONTROL

- **10k Ω** DHW Indirect Tank Sensor (125 Unit Only) or DHW Indirect Tank Aquastat (Heating Only Boilers)
- **1k Ω** Outdoor Reset Sensor
- **Zone Control End-Switch**
- **Open Therm**
- **0-10 V Connection**
- **SUPPLY Cord 120V/60HZ**

* Ground Sensors using terminal 4
Locate shut off valve after any field installed LWCO.
If adding an indirect tank with **sensor** to a **Heating Only Boiler**, change P03 from 08 to 05. See Section 9, Parameter Settings in Boiler Installation, Operation & Maintenance Manual for details.

Reference zone control manufacturer instructions for details on setting priority if necessary.
If adding an indirect tank with *Thermostat* to a *Heating Only Boiler*, change P03 from 08 to 04. See Section 9, Parameter Settings in Boiler Installation, Operation & Maintenance Manual for details.

Reference zone control manufacturer instructions for details on setting priority if necessary.
Locate shut off valve after any field installed LWCO.
If adding an indirect tank with sensor to a Heating Only Boiler, change P03 from 08 to 05.
See Section 9, Parameter Settings in Boiler Installation, Operation & Maintenance Manual for details.
If adding an indirect tank with Thermostat to a Heating Only Boiler, change P03 from 08 to 04. See Section 9, Parameter Settings in Boiler Installation, Operation & Maintenance Manual for details.

Reference zone control manufacturer instructions for details on setting priority if necessary.
Locate shut-off valve after any field installed LWCO.

Shut off & Purge Valve
If adding an indirect tank with Thermostat to a Heating Only Boiler, change P03 from 08 to 04. See Section 9, Parameter Settings in Boiler Installation, Operation & Maintenance Manual for details.

Reference zone control manufacturer instructions for details on setting priority if necessary.
PN 240011430 REV. P [09/15/2021]

LOCATE SHUT OFF VALVE AFTER ANY FIELD INSTALLED LWCO.

Diagram shows the piping system for a heating system with zone valves. The diagram includes:
- FROM SYSTEM
- Shut-off & Purge Valve
- Magnetic Dirt Separator
- Primary Pump
- Z1 DHW
- Hot Water Supply Tempered
- Cold Water Supply
- Heating Load

Instructions:
- Locate shut-off valve after any field installed LWCO.

Note: The diagram is complex and includes various components and connections typical of a heating system with zone valves.
If adding an indirect tank with Thermostat to a Heating Only Boiler, change P03 from 08 to 04. See Section 9, Parameter Settings in Boiler Installation, Operation & Maintenance Manual for details.

Reference zone control manufacturer instructions for details on setting priority if necessary.
Locate shut off valve after any field installed LWCO.
115, 150 & 205 WITH ZONE CIRCULATORS - WIRING DIAGRAM

115 Vac field supplied power per NEC and local codes.
Locate shut off valve after any field installed LWCO.
115, 150 & 205 WITH ZONE VALVES, ARGO UZ3 ZONE CONTROL

THERMOSTATS

ZONE VALVES

VANNES DE ZONE

NEC Class 2 Low Voltage (24Vac)

TO EXPANSION ZONE MODULE

ZONE CIRCULATOR

UZ3

DIGITAL LCD USER DISPLAY

M2 terminal strip on boiler

115 VAC

12A 250V

FUSE

115 VAC FIELD SUPPLIED POWER PER NEC AND LOCAL CODES

PRIMARY PUMP

TRANSFORMER

115, 150 & 205 WITH ZONE VALVES - WIRING DIAGRAM

PN 240011430 REV. P [09/15/2021]
Buffer Tank Piping

When installing low mass systems, additional water mass may be required to avoid short cycling by the boiler. In these applications it is recommended that a buffer tank be installed.

Buffer Tank on Central Heat Circuit Using Internal Boiler Circulator

Note:
- DHW piping not shown for clarity. Reference applicable sections of this manual for DHW piping details.
- Internal Boiler circulator used on Primary circuit.
Buffer Tank On Central Heat Circuit With Primary Pump and Supplied Manifold

NOTE: Acceptable primary pump locations: Either 1 or 2. For pump wiring see diagrams on pages 26-29.
Buffer Tank Pump Wiring

Controlling A Primary Pump On A Combi Boiler With Zone Valves, No Indirect Tank
Buffer Tank Pump Wiring

Controlling A Primary Pump On A Combi Boiler With Zone Pumps, Argo ARM 4P Zone Control and A822-II

To Zone Tstats

To Zone Pumps

120Vac power to control

Factory Installed Jumper Between L1 & 3

120Vac power to control

120Vac power to control

Class 2 Terminals

Primary Terminals
Buffer Tank Pump Wiring

Controlling A Primary Pump On A Combi Boiler With Zone Valves and Indirect Tank With Priority Argo UZ3 and AR22II Zone Controls

Buffer Tank

Domestic Hot Water Tank

M2

ZONE THERMOSTATS

ZONE VALVES

DIGITAL LCD USER DISPLAY

TO EXPANSION ZONE MODULE

Transformer

DHW PUMP

PRIMARY PUMP

115 Vac FIELD SUPPLIED POWER PER NEC AND LOCAL CODES

FIEL SUPPLIED POWER PER NEC AND LOCAL CODES

NEC Class 2 Low Voltage

NEC Class 2 Low Voltage (24Vac)

Field Supplied Power Per NEC and Local Codes

Buffer Tank Pump Wiring

Controlling A Primary Pump On A Combi Boiler With Zone Valves and Indirect Tank With Priority Argo UZ3 and AR22II Zone Controls

Buffer Tank

Domestic Hot Water Tank

M2

ZONE THERMOSTATS

ZONE VALVES

DIGITAL LCD USER DISPLAY

TO EXPANSION ZONE MODULE

Transformer

DHW PUMP

PRIMARY PUMP

115 Vac FIELD SUPPLIED POWER PER NEC AND LOCAL CODES

FIEL SUPPLIED POWER PER NEC AND LOCAL CODES

NEC Class 2 Low Voltage

NEC Class 2 Low Voltage (24Vac)

Field Supplied Power Per NEC and Local Codes
Optional Equipment

IMPORTANT: Sensors supplied with this boiler are proprietary to the manufacturer. Use of alternate market sensors WILL diminish boiler performance.

1. **1k Ω** Outdoor Air Sensor, if used.
 A. Boiler automatically recognizes sensor when used.
 B. See Chart 1 for sensor data. Sensor part number BD710487302V
 C. Locate outdoor sensor to protect against wind and direct sunlight. Mounting instructions provided with sensor.
 D. Maximum wire length is 100 ft (30m) for 22 ga. wire, or 150 ft (45m) for 18 ga. wire.
 E. Connect wires to M2 OUTDOOR SENSOR terminals 4 & 5. Wires are interchangeable. See Accessories.

2. **10k Ω** Sensor for Indirect DHW Tank (Heating Only Boiler, Exception: not applicable to the 165 model, use aquastat for indirect tank control).
 A. See Chart 2 for sensor data.
 B. Connect wires to M2 terminals 3 & 4.

CHART 1 - 1k Ω OUTDOOR AIR SENSOR DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.0</td>
<td>7,578</td>
<td>53.6</td>
<td>1,690</td>
</tr>
<tr>
<td>-2.2</td>
<td>7,193</td>
<td>55.4</td>
<td>1,621</td>
</tr>
<tr>
<td>-0.4</td>
<td>6,831</td>
<td>57.2</td>
<td>1,555</td>
</tr>
<tr>
<td>1.4</td>
<td>6,489</td>
<td>59.0</td>
<td>1,492</td>
</tr>
<tr>
<td>3.2</td>
<td>6,166</td>
<td>60.8</td>
<td>1,433</td>
</tr>
<tr>
<td>5.0</td>
<td>5,861</td>
<td>62.6</td>
<td>1,375</td>
</tr>
<tr>
<td>6.8</td>
<td>5,574</td>
<td>64.4</td>
<td>1,321</td>
</tr>
<tr>
<td>8.6</td>
<td>5,303</td>
<td>66.2</td>
<td>1,268</td>
</tr>
<tr>
<td>10.4</td>
<td>5,046</td>
<td>68.0</td>
<td>1,218</td>
</tr>
<tr>
<td>12.2</td>
<td>4,804</td>
<td>69.8</td>
<td>1,170</td>
</tr>
<tr>
<td>14.0</td>
<td>4,574</td>
<td>71.6</td>
<td>1,125</td>
</tr>
<tr>
<td>15.8</td>
<td>4,358</td>
<td>73.4</td>
<td>1,081</td>
</tr>
<tr>
<td>17.6</td>
<td>4,152</td>
<td>75.2</td>
<td>1,040</td>
</tr>
<tr>
<td>19.4</td>
<td>3,958</td>
<td>77.0</td>
<td>1,000</td>
</tr>
<tr>
<td>21.2</td>
<td>3,774</td>
<td>78.8</td>
<td>962</td>
</tr>
<tr>
<td>23.0</td>
<td>3,600</td>
<td>80.6</td>
<td>926</td>
</tr>
<tr>
<td>24.8</td>
<td>3,435</td>
<td>82.4</td>
<td>892</td>
</tr>
<tr>
<td>26.6</td>
<td>3,279</td>
<td>84.2</td>
<td>858</td>
</tr>
<tr>
<td>28.4</td>
<td>3,131</td>
<td>86.0</td>
<td>827</td>
</tr>
<tr>
<td>30.2</td>
<td>2,990</td>
<td>87.8</td>
<td>796</td>
</tr>
<tr>
<td>32.0</td>
<td>2,857</td>
<td>89.6</td>
<td>767</td>
</tr>
<tr>
<td>33.8</td>
<td>2,730</td>
<td>91.4</td>
<td>740</td>
</tr>
<tr>
<td>35.6</td>
<td>2,610</td>
<td>93.2</td>
<td>713</td>
</tr>
<tr>
<td>37.4</td>
<td>2,496</td>
<td>95.0</td>
<td>687</td>
</tr>
<tr>
<td>39.2</td>
<td>2,387</td>
<td>96.8</td>
<td>663</td>
</tr>
<tr>
<td>41.0</td>
<td>2,284</td>
<td>98.6</td>
<td>640</td>
</tr>
<tr>
<td>42.8</td>
<td>2,186</td>
<td>100.4</td>
<td>617</td>
</tr>
<tr>
<td>44.6</td>
<td>2,093</td>
<td>102.2</td>
<td>595</td>
</tr>
<tr>
<td>46.4</td>
<td>2,004</td>
<td>104.0</td>
<td>575</td>
</tr>
<tr>
<td>48.2</td>
<td>1,920</td>
<td>104.0</td>
<td>575</td>
</tr>
<tr>
<td>50.0</td>
<td>1,840</td>
<td>106.0</td>
<td>556</td>
</tr>
</tbody>
</table>

CHART 2 - 10k Ω INDIRECT TANK SENSOR DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32.0</td>
<td>32,505</td>
<td>86.0</td>
<td>8,060</td>
</tr>
<tr>
<td>33.8</td>
<td>30,898</td>
<td>87.8</td>
<td>7,726</td>
</tr>
<tr>
<td>35.6</td>
<td>29,381</td>
<td>89.6</td>
<td>7,407</td>
</tr>
<tr>
<td>37.4</td>
<td>27,946</td>
<td>91.4</td>
<td>7,103</td>
</tr>
<tr>
<td>39.2</td>
<td>26,590</td>
<td>93.2</td>
<td>6,813</td>
</tr>
<tr>
<td>41.0</td>
<td>25,308</td>
<td>95.0</td>
<td>6,537</td>
</tr>
<tr>
<td>42.8</td>
<td>24,094</td>
<td>96.8</td>
<td>6,273</td>
</tr>
<tr>
<td>44.6</td>
<td>22,946</td>
<td>98.6</td>
<td>6,021</td>
</tr>
<tr>
<td>46.4</td>
<td>21,859</td>
<td>100.4</td>
<td>5,781</td>
</tr>
<tr>
<td>48.2</td>
<td>20,829</td>
<td>102.2</td>
<td>5,551</td>
</tr>
<tr>
<td>50.0</td>
<td>19,854</td>
<td>104.0</td>
<td>5,332</td>
</tr>
<tr>
<td>51.8</td>
<td>18,930</td>
<td>105.8</td>
<td>5,123</td>
</tr>
<tr>
<td>53.6</td>
<td>18,054</td>
<td>107.6</td>
<td>4,923</td>
</tr>
<tr>
<td>55.4</td>
<td>17,223</td>
<td>109.4</td>
<td>4,732</td>
</tr>
<tr>
<td>57.2</td>
<td>16,436</td>
<td>111.2</td>
<td>4,549</td>
</tr>
<tr>
<td>59.0</td>
<td>15,689</td>
<td>113.0</td>
<td>4,374</td>
</tr>
<tr>
<td>60.8</td>
<td>14,980</td>
<td>114.8</td>
<td>4,207</td>
</tr>
<tr>
<td>62.6</td>
<td>14,306</td>
<td>116.6</td>
<td>4,047</td>
</tr>
<tr>
<td>64.4</td>
<td>13,667</td>
<td>118.4</td>
<td>3,894</td>
</tr>
<tr>
<td>66.2</td>
<td>13,060</td>
<td>120.2</td>
<td>3,748</td>
</tr>
<tr>
<td>68.0</td>
<td>12,483</td>
<td>122.0</td>
<td>3,608</td>
</tr>
<tr>
<td>69.8</td>
<td>11,935</td>
<td>123.8</td>
<td>3,473</td>
</tr>
<tr>
<td>71.6</td>
<td>11,414</td>
<td>125.6</td>
<td>3,345</td>
</tr>
<tr>
<td>73.4</td>
<td>10,919</td>
<td>127.4</td>
<td>3,222</td>
</tr>
<tr>
<td>75.2</td>
<td>10,447</td>
<td>129.2</td>
<td>3,104</td>
</tr>
<tr>
<td>77.0</td>
<td>9,999</td>
<td>131.0</td>
<td>2,991</td>
</tr>
<tr>
<td>78.8</td>
<td>9,572</td>
<td>132.8</td>
<td>2,882</td>
</tr>
<tr>
<td>80.6</td>
<td>9,166</td>
<td>134.6</td>
<td>2,778</td>
</tr>
<tr>
<td>82.4</td>
<td>8,779</td>
<td>136.4</td>
<td>2,679</td>
</tr>
<tr>
<td>84.2</td>
<td>8,411</td>
<td>138.2</td>
<td>2,583</td>
</tr>
</tbody>
</table>
1. **1K Ohm (1K Ω) Outdoor Temperature Sensor Kit - BD710487302V**
 - Use the Outdoor Sensor (OAS) Kit with Heating Only or Combi Boilers.
 - Wire Control to boiler M2 terminal strip, terminals 4 and 5 as shown.
 - Install/locate Control follow supplied instructions with sensor kit and Installation, Operation and Maintenance Manual (IOM).

Setting “Kt” Climate Curve:

1. Boiler automatically recognizes OAS sensor when wired to M2 terminal block. Display changes to show current default “Kt” value (80). Note display value.
2. When operating in CH mode, boiler setpoint is determined by the Kt value selected and actual outside air temperature. Refer to applicable °F (or °C) chart, (pg. 30) for setpoint information.
 - Select Kt range which will satisfy the desired boiler delivery temperature based on outdoor temperature range expected for your location. For example: if you need 176°F water when the outside temperature is 20°F and colder, select 35 for your Kt setting.
 - To change “default” Kt value on boiler control use CH Heating buttons.
 - Restrict the upper limit of the Kt curve by using Parameter P16 to set the maximum boiler water temperature. P16 Default is 176°F.
3. When OAS is installed, pressing CH or buttons will no longer display boiler CH setpoint temperature. It now displays the Kt value which can range from 10 to 90.
4. When scrolling has stopped, boiler will automatically “SAVE” value as new Kt default value and automatically return to CH mode when no Kt adjustment activity is sensed. Kt values can be changed in +/- 1 point increments.
5. To return, to verify or change current Kt “default value, depress one of the CH setpoint adjustment buttons (once), while in any heating or standby mode. Adjust Kt value to obtain desired comfort level.

Note

For temperatures below -40°F (-40°C), maximum heating flow temperature set point no longer increases and curves on the graph become horizontal. Boiler set point will override sensor setpoint.
2. 10k Ω Indirect Storage Tank Sensor Kit

Heating Only boiler can be electrically connected to Indirect Storage Tank.

Diagram of electrical connection of external indirect storage tank is shown below.

Connect DHW priority sensor to terminals 3 and 4 on terminal block M2. The element of the sensor must be inserted in the sensor well located on the indirect storage tank.

Verify the exchange capacity of the indirect boiler tank coil is appropriate for power of the heating only boiler. Adjust DHW temperature (+95°F...+140°F / +35°C...+60°C) by pressing buttons on boiler control panel.

Diagram of electrical connection of external indirect storage tank is shown below.

Connect DHW priority sensor to terminals 3 and 4 on terminal block M2. The element of the sensor must be inserted in the sensor well located on the indirect storage tank.

Verify the exchange capacity of the indirect boiler tank coil is appropriate for power of the heating only boiler. Adjust DHW temperature (+95°F...+140°F / +35°C...+60°C) by pressing buttons on boiler control panel.

Management of 0-10V Input

To activate the 0-10v function parameter 82 must be set to 3.

There must be at or above 3 V DC present for the control to recognize a call for heat.

When P78 = 1 the 0-10v input manages CH heating setpoint directly per chart below.

When P78 = 2 the 0-10v input manages CH heating input directly per chart below.

When P78 = 0 Disabled

<table>
<thead>
<tr>
<th>P78=1</th>
<th>P78=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Temp Setting</td>
</tr>
<tr>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>0-3</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td>9</td>
<td>73</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
</tr>
</tbody>
</table>

Note:

Parameter PO3 for Heating Only boiler, with no indirect tank remains Factory Set at 08. No change is required.

If adding an Indirect Tank with a sensor to Heating Only Boiler - change PO3 parameter from 08 to 05.

If adding an Indirect Tank with a thermostat to Heating Only Boiler - change PO3 parameter from 08 to 04.

See Section 9, Parameter Settings, in boiler's Installation, Operation, and Maintenance Manual.

Parameter PO3 for COMBI boiler factory set at 00 requires no change.
Single Zone Circulator Wiring Using ARGO AR822-II
If any of the original wire as supplied with the appliance must be replaced, it must be replaced with wire having the same specifications.
ALTITUDE EFFECTS ON BOILER PERFORMANCE

MODELS 100/115
CALCULATED EFFECTS OF HI-ALTITUDE ON BOILER PERFORMANCE

MODELS 125/150
CALCULATED EFFECTS OF HI-ALTITUDE ON BOILER PERFORMANCE

MODELS 165/205
CALCULATED EFFECTS OF HI-ALTITUDE ON BOILER PERFORMANCE
APPLICATION TABLE - INDIRECT HOT WATER TANK PERFORMANCE CHART

HEATING ONLY BOILERS 100, 125, 165

<table>
<thead>
<tr>
<th>Model</th>
<th>Max. First Hour Rating</th>
<th>Continuous Rating</th>
<th>BOILER OUTPUT NEEDED FOR MAXIMUM PERFORMANCE</th>
<th>Boiler Water Flow Through Coil</th>
<th>Pressure Drop Through Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140 F</td>
<td>115 F</td>
<td>140 F</td>
<td>115 F</td>
<td>(BTU/Hr)</td>
</tr>
<tr>
<td>H20I30</td>
<td>176</td>
<td>233</td>
<td>149</td>
<td>206</td>
<td>112,000</td>
</tr>
<tr>
<td>H20I40</td>
<td>193</td>
<td>254</td>
<td>157</td>
<td>215</td>
<td>118,000</td>
</tr>
<tr>
<td>H20I40L</td>
<td>186</td>
<td>251</td>
<td>150</td>
<td>215</td>
<td>116,000</td>
</tr>
<tr>
<td>H20I50</td>
<td>196</td>
<td>254</td>
<td>151</td>
<td>231</td>
<td>125,000</td>
</tr>
<tr>
<td>H20I60</td>
<td>231</td>
<td>298</td>
<td>177</td>
<td>244</td>
<td>132,000</td>
</tr>
<tr>
<td>H20I60L</td>
<td>211</td>
<td>272</td>
<td>157</td>
<td>218</td>
<td>118,000</td>
</tr>
<tr>
<td>H20I80</td>
<td>241</td>
<td>306</td>
<td>169</td>
<td>234</td>
<td>127,000</td>
</tr>
<tr>
<td>H20I115</td>
<td>291</td>
<td>363</td>
<td>188</td>
<td>260</td>
<td>141,000</td>
</tr>
</tbody>
</table>

High Output Units 60HO, 80HO, and 115HO

<table>
<thead>
<tr>
<th>Model</th>
<th>Max. First Hour Rating</th>
<th>Continuous Rating</th>
<th>BOILER OUTPUT NEEDED FOR MAXIMUM PERFORMANCE</th>
<th>Boiler Water Flow Through Coil</th>
<th>Pressure Drop Through Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140 F</td>
<td>115 F</td>
<td>140 F</td>
<td>115 F</td>
<td>(BTU/Hr)</td>
</tr>
<tr>
<td>H20I60HO</td>
<td>353</td>
<td>468</td>
<td>299</td>
<td>414</td>
<td>221,000</td>
</tr>
<tr>
<td>H20I80HO</td>
<td>366</td>
<td>479</td>
<td>294</td>
<td>407</td>
<td>220,000</td>
</tr>
<tr>
<td>H20I80HOC</td>
<td>386</td>
<td>507</td>
<td>314</td>
<td>435</td>
<td>236,000</td>
</tr>
<tr>
<td>H20I15HO</td>
<td>413</td>
<td>532</td>
<td>310</td>
<td>429</td>
<td>232,000</td>
</tr>
<tr>
<td>H20I115HOC</td>
<td>423</td>
<td>545</td>
<td>320</td>
<td>442</td>
<td>240,000</td>
</tr>
</tbody>
</table>

Extra High Output Units 85XHO and 115XHO

<table>
<thead>
<tr>
<th>Model</th>
<th>Max. First Hour Rating</th>
<th>Continuous Rating</th>
<th>BOILER OUTPUT NEEDED FOR MAXIMUM PERFORMANCE</th>
<th>Boiler Water Flow Through Coil</th>
<th>Pressure Drop Through Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140 F</td>
<td>115 F</td>
<td>140 F</td>
<td>115 F</td>
<td>(BTU/Hr)</td>
</tr>
<tr>
<td>H20I85XHOC</td>
<td>649</td>
<td>868</td>
<td>571</td>
<td>790</td>
<td>428,000</td>
</tr>
<tr>
<td>H20I115XHOC</td>
<td>674</td>
<td>893</td>
<td>571</td>
<td>790</td>
<td>428,000</td>
</tr>
</tbody>
</table>

Notes:

176 °F Boiler Supply Water Temperature, AHRI Conditions -50 °F Inlet Water @ 240 GPH Flow Rate.
Low Water Cut Off - Heating Only and Combi Boilers

These guidelines are supplied when necessary to install an additional Low Water Cut Off (LWCO), for sensing a low water level condition in a boiler, as required by the Authority Having Jurisdiction.

Follow LWCO manufacturer installation instructions for type of LWCO selected in addition to these instructions.

LWCO shall be 120V/60Hz control and dry contacts sized for load being connected. Wire control to boiler. See Figure below.

Connect LWCO device to the system ground. Ground Boiler in accordance with the requirements of the authority having jurisdiction or, in the absence of such requirements, with the National Electrical Code (NEC) or Canadian Electrical Code CEC.

LWCO Wiring Diagram

- Locate LWCO sensing device in the supply piping, above the minimum height of boiler. See Figure page 42, Piping Diagram.
- Position control in piping above boiler to assure proper boiler protection.
- For proper operation, sensing element of the LWCO control shall be positioned in the tee to sense the main water stream. Maintain minimum 1/4" spacing from pipe walls. Element shall NOT contact the rear, or side walls of the tee. See Figure page 43.
- Install an air vent using a tee to avoid nuisance shutdowns.
- Apply small amount of pipe sealant to threaded connections.
- Arrange piping to prevent water dripping onto boiler.
- DO NOT install water shutoff valve between boiler and LWCO sensing device.
Piping Diagram - LWCO Location

- **Note**: Arrange piping to prevent water dripping onto boiler.
- **Note**: Illustrations are meant to show system piping concept only. Installer is responsible for all equipment and detailing required by authority having jurisdiction.

- DO NOT PLACE ISOLATION VALVE BEFORE TEE OR LWCO.

* Check Local Codes for Maximum Distance to Floor.

* To Drain
Low Water Cutoff - Detail

NO

NO

NO

YES
Initial Fault Finding Checks

1. Check gas, water and electrical supplies are available at the boiler.
2. Electrical supply = 120V ~60 HZ
3. The preferred minimum gas pressure is 3.5” wc for Natural gas and 10” for LPG
 Perform electrical system checks, i.e. Ground Continuity,
4. Resistance to Ground, Short Circuit and Polarity with a suitable meter.

NOTE: These checks must be repeated after any servicing or fault finding.

Ensure all external controls are calling for heat and check all external and internal fuses. Before any servicing or replacement of parts, ensure the gas and electrical supplies are isolated.

1. If a fault occurs on the boiler an error code may show on the facia display:
 - **E53** - Indicates possible obstruction in the flue duct.
 - **E55** - Indicates the PCB is not setting/calibrated.
 - **E71, E72, E78, and E92** - Indicates possible wrong calibration, a new calibration is needed.
 - **E92** - Indicates possible flue recirculation in the flue duct.
 - **E83......87** - Shows possible error of communication with thermostat. (Go to section P, page 47)
 - **E110** - Shows overheat of primary.
 - **E117** - is displayed when the primary water pressure is more than 43 psi.
 - **E118** - is displayed when the primary water pressure is less than 7.25 psi.
 - **E125** - is displayed in either of two (2) situations:
 a) If within a time between 15...30 seconds of the burner lighting the boiler temperature has not changed by 2°F.
 b) If within 10 minutes of the burner lighting the boiler temperature twice exceeds the selected temperature by 80°F.
 In these instances poor primary circulation is indicated.
 - **E128** - is displayed if there has been a flame failure during normal burner operation.
 - **E133, E134, E135** - Indicate the gas supply has been interrupted, ignition has failed or flame has not been detected.
2. Pressing the ‘RESET’ button for 1-3 seconds when: **E110, E125, E133, E134, E135, E09, E15, E128 and E384** - are displayed it is possible to relight the boiler.
3. If this does not have an effect, or error codes are displayed regularly further investigation is required.

Table of Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E09</td>
<td>Gas Valve Connection Cable</td>
</tr>
<tr>
<td>E10</td>
<td>External Probe Fault</td>
</tr>
<tr>
<td>E12</td>
<td>Water Flow Switch Open</td>
</tr>
<tr>
<td>E13</td>
<td>Water Flow Switch Close</td>
</tr>
<tr>
<td>E15</td>
<td>Gas Valve Fault</td>
</tr>
<tr>
<td>E18</td>
<td>Water Refill Enabled</td>
</tr>
<tr>
<td>E19</td>
<td>Max Time Of Water Refill</td>
</tr>
<tr>
<td>E20</td>
<td>Central Heating Flow NTC Fault</td>
</tr>
<tr>
<td>E28</td>
<td>Flue NTC Fault</td>
</tr>
<tr>
<td>E40</td>
<td>Central Heating Return NTC Fault</td>
</tr>
<tr>
<td>E50</td>
<td>Hot Water NTC Fault (tank version)</td>
</tr>
<tr>
<td>E53</td>
<td>Obstruction on flue pipe-combustion off</td>
</tr>
<tr>
<td>E55</td>
<td>PCB to be set by the “Calibration Function”</td>
</tr>
<tr>
<td>E71</td>
<td>Fan parameter Out of range in auto calibration</td>
</tr>
<tr>
<td>E72</td>
<td>Combustion test out of range in auto calibration</td>
</tr>
<tr>
<td>E77</td>
<td>Current Out of range</td>
</tr>
<tr>
<td>E78</td>
<td>Minimum gas valve current</td>
</tr>
<tr>
<td>E79</td>
<td>Maximum gas valve current</td>
</tr>
<tr>
<td>E83-87</td>
<td>Communication error</td>
</tr>
<tr>
<td>E92</td>
<td>Combustion test alarm during auto-setting</td>
</tr>
<tr>
<td>E109</td>
<td>Pre-Circulation Fault</td>
</tr>
<tr>
<td>E110</td>
<td>Safety Thermostat Operated</td>
</tr>
<tr>
<td>E117</td>
<td>System Water Pressure To High</td>
</tr>
<tr>
<td>E118</td>
<td>System Water Pressure To Low</td>
</tr>
<tr>
<td>E125</td>
<td>Circulation Fault (Primary Circuit)</td>
</tr>
<tr>
<td>E128</td>
<td>Flame Failure</td>
</tr>
<tr>
<td>E129</td>
<td>Frequent loss of flame during ignition</td>
</tr>
<tr>
<td>E130</td>
<td>Flue NTC Operated</td>
</tr>
<tr>
<td>E133</td>
<td>Interruption of Gas Supply or Flame Failure</td>
</tr>
<tr>
<td>E134</td>
<td>Elapsed time Gas valve open without gas</td>
</tr>
<tr>
<td>E135</td>
<td>Interruption of gas supply (internal error)</td>
</tr>
<tr>
<td>E160</td>
<td>Fan or Fan Wiring Fault</td>
</tr>
<tr>
<td>E321</td>
<td>Domestic Hot Water NTC sensor fault</td>
</tr>
<tr>
<td>E384</td>
<td>False flame</td>
</tr>
<tr>
<td>E385</td>
<td>Under voltage</td>
</tr>
</tbody>
</table>

Note: When instructed press and hold “RESET” for between 1-3 seconds to reset the boiler.
Domestic hot water

Turn on mains power. The display illuminates

YES

NO

Error 110 or 133 or 134 or 135 or 125 or 384 or 09 or 15 flashing

YES

NO

Press the ‘Reset’ button for between 1-3 seconds

YES

NO

If the E110 is still flashing. Go to section ‘H’

Error 20, 28, 40, 50, 321 or 431 flashing

BYE

NO

Go to section ‘D’, if E55 is displayed go to section N

Error 117 or 118 flashing

BYE

NO

Go to section ‘I’

Open DHW tap fully. Pump runs.

YES

NO

DHW flow rate more than 2 l/min

YES

NO

Go to section ‘L’

Fan runs after up to 3 seconds

YES

NO

Error 160 flashing Go to section ‘C’

Fan runs at correct speed

YES

NO

Error 160 flashing Go to section ‘C’

Spark at ignition electrodes for up to 5 seconds and for 5 attempts.

YES

NO

YES

NO

YES

NO

NO

NO

NO

NO

Burner lights

YES

NO

Burner does not stay alight after 5 seconds

YES

NO

Error E125 flashing after 1 minute

YES

NO

Error E125 flashing (loss of flame 12 times) Go to section ‘G’

Error E110 flashing

YES

NO

Go to section ‘H’

3 way valve open to domestic hot water circuit

YES

NO

Go to section ‘K’

Burner output modulates to maintain the temperature set

YES

NO

Check the Central Heating NTC sensor Go to section ‘D’

Error E130 flashing

YES

NO

Go to section ‘M’

Burner goes out

YES

NO

Fan stops after 30 seconds

YES

Operation sequence successful

ERROR 110 or 133 or 134 or 135 or 125 or 384 or 09 or 15 flashing or re-occurs regularly check all PCB connections, if this has no effect replace the PCB.
Fault Finding Solutions Sections

A

Power supply 120V

1. Main terminals L and N
 - Check electrical supply
 - Connection OK at connector x10

2. Integrity of the fuse
 - Replace fuse

3. PCB – X10 connector
 Mains terminals L & N
 - Check wiring
 - Display illuminated

B

120V at PCB – connector x13 pump terminals Blue to Brown (See Wiring Diagram)

YES

120V between PCB – connector x13 pump terminal Blue and PCB – connector x11 pump terminal Black. (See Wiring Diagram)

YES

120V at Pump

YES

Check wiring

Replace Pump

NO

Replace PCB

C

Fan connections correct at fan and PCB
Connectors X11 & X23 See Wiring Diagram

NO

Make connections

YES

Is there 120V AC at fan terminals connector X11 blue to brown. See Wiring Diagram

YES

Fan jammed of faulty winding

Replace fan

NO

Replace PCB
D

Temperature sensor faulty, Check correct location and wiring

YES

Temperature sensors faulty, Cold resistance approximately
10kΩ @ 77° F (CH sensor)
20kΩ @ 77° F (Flue sensor)
(resistance reduces with increase in temp.)

NO

Replace sensor

E

Gas at burner

NO

Ensure gas is on and purged

Check wiring & PCB – X36 and X2 connector. See Wiring Diagram.

Check the resistance of the coils:
Pin 1 and 3 = 20 - 30 Ohm
Pin 2 and 4 = 60 - 70 Ohm

NO

Replace gas valve

YES

Replace PCB

F

1. Check and correct if necessary
 1. Inlet gas pressure
 2. Ignition electrode and lead
 3. Electrode connection
 4. Spark gap and position
 5. Continuity between burner and earth
 6. Condensate trap blocked

YES

Check wiring, See Wiring Diagram

NO

Replace PCB

2. Check and correct if necessary
 1. Proper operation of the condensate sensor
 2. Ground wires attached to condensate switch
 3. Flame sensing wires attached to condensate switch

Replace condensate sensor or wires

G

1. Check the gas supply pressure:
 For Natural Gas greater than 3.5"w.c
 For LPG greater than 8"w.c

2. Check and correct if necessary
 1. Flame sensing electrode position
 2. Flame sensing electrode and lead connections
 3. Recirculation of flue
 4. Calibration
 (CO2 values - see instruction)

Replace flame sensing electrode or gas valve

3. Check and correct if necessary
 1. Proper operation of the condensate sensor
 2. Ground wires attached to condensate switch
 3. Flame sensing wires attached to condensate switch

Replace condensate sensor or wires
FAULT SOLUTION SECTIONS

H
Overheat thermostat operated or faulty.

- Check for and correct any system faults (water circulation).
- Allow to cool. Continuity across thermostat terminals more than 1.5 ohm → Replace safety thermostat
- Check Flow, Return, sensors. See section ‘D’ → Is E110 is still flashing → Replace PCB

I
CH system pressure less than 7.25 psi or more than 43 psi.

- Restore System Pressure
- Check wiring and pcb connection at connector x22 is there approx. 5 V DC between the green and black terminals → Replace pressure sensor
- Replace PCB

J
Ensure correct circulation of the pump

- Check flow temperature sensor connections and position. Sensors swapped.
- Cold resistance approximately. 10kΩ @ 77°F (CH sensors) (resistance reduces with increase in temp.) → Replace sensor
- Go to section ‘B’

K
Is there 120V at:

1. PCB connector x13 3 way valve terminals
 - Blue to Black central heating mode
 - Blue to Brown domestic hot water mode
 See Wiring Diagram → Replace PCB
 - Check 3 way valve cable.

2. Motor, 3 way valve → Replace motor 3 way valve
Is main water filter and assembly clean and rotor free to move?

Yes: PCB connector x22 Hall effect sensor terminals. Check the voltage is approximately 5 VDC between the Red and Blue wires. See Wiring Diagrams.

Yes: With water running through DHW circuit, measure red and white wire for 2.8 VDC for flow triggering.

Yes: Check DHW NTC sensor for proper OHM value

Yes: Replace PCB

No: Replace PCB

No: Replace Hall Effect Sensor

No: Replace DHW NTC sensor

1. Temperature sensors faulty.
 Cold resistance approximately
 10kΩ @ 77° F (CH sensor)
 20kΩ @ 77° F (Flue sensor)
 (resistance reduces with increase in temp.)

No: Replace sensor

2. If pump is running the heat exchanger could be obstructed

Yes: Replace heat exchanger

Performs the autocalibration function (see the Service manual)

Display blank: Verify the position of the Service key

1. Check obstruction in the flue duct

 Yes: Remove the obstruction on the flue pipe

 No: Performs the calibration function (see the Service manual)

2. Check and correct if necessary
 1. Proper operation of the condensate sensor
 2. Ground wires attached to condensate switch
 3. Flame sensing wires attached to condensate switch

 Replace condensate sensor or wires

Check the electrical connection between Ru and pcb
<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Changed From</th>
<th>Changed To</th>
<th>Date</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Commissioning Function is as follows:

- **When power is supplied to the boiler for the first time**, **0 0 0** will be displayed. If **0** is shown, press **0 R** for at least 2 seconds **0 0 0** will now be displayed.

- Press **I P & III+** together and hold for at least 6 seconds. The “De-Aeration” Function will be activated & “On” showing. The boiler pump will run for up to 10 minutes. For 3-way valve models the valve will switch between heating & hot water. This will purge air from the system. The display will show **3 1 2**.

Gas Type Check

- Once de-aeration is complete on first fire-up the boiler will light and operates for 6 or 7 minutes to automatically check the gas type Gas A (Natural Gas “NG”) or Gas E (Liquefied Petroleum Gas “LPG”). The boiler software check the combustion value against the set value. **0 0 0** will be displayed alternating the % value of ignition power and the temperature value °F(°C).

- On a Gas A (Natural Gas) supply the display shows **n L** for at least 10 seconds and the boiler is ready for the normal operation. If the display shows **LPG**, press **0 R & I P** together and hold for at least 4 seconds to exit the function without saving.

- On a Gas E (LPG) supply the display show **LPG**, press **I P** for at least 6 seconds to confirm that this is the intended gas type for the installation.

If the display shows **n L**, press **0 R & I P** together and hold for at least 4 seconds to exit the function without saving then modify **P02=01** as described in the Manual Instructions for the Installer section “PARAMETERS SETTING”.

- While the gas type is being identified, the boiler may be noisy.

IMPORTANT INFORMATION

READ THIS LEAFLET BEFORE COMMISSIONING THE BOILER

IMPORTANT:

Upon startup of this new boiler please call ECR International, Inc. Technical Support for installation assistance and registration.

Technical Support and Product Registration
Monday - Friday 8AM to 6PM Eastern time.
1.800.253.7900

Described below is the procedure to activate the Commissioning Function which includes De-Aeration Function/Gas Type Check when power is first supplied to the boiler and the actions required when on a Gas E (LPG) supply.

IMPORTANT: Gas Type Check

Ensure the maximum heat exchange to the system in Heating or DHW mode (DHW request) in order to avoid the boiler shutoff for overheating.

FUNCTION INTERRUPT

If either De-aeration or Gas Check is interrupted by electrical power failure is necessary to reactivate the function by pressing **I P & III+** together for at least 6 seconds.

During De-aeration, if the display shows E118 (water low pressure), open the water filling tap and repressurising the system to the correct pressure value.

During Gas Type Check, if the display shows E133 (Ignition Failure), press **P button to Reset then press together I P & III+** for at least 6 seconds to restart the function.

During Gas Type Check, if the boiler switch off for overheating failure is necessary to reactivate the function by pressing **I P & III+** together for at least 6 seconds.

IMPORTANT: The combustion for this appliance has been checked, adjusted and pre-set at the factory for operation on the gas type specified on the appliance data plate.

During the Gas Type Check Function the combustion ratio will increase for a short time while the gas type is established.

The display shows the Gas Type Check

IF THE BOILER IS TO BE OPERATED ON GAS E (LP) REPLACE THE EXISTING LABEL WITH THE GAS E LABEL SUPPLIED WITH THIS INSTRUCTION. ASSURE FACTORY SUPPLIED CONVERSION LABEL IS APPLIED TO PRODUCT IF CONVERTING TO LP.
INFORMATIONS IMPORTANTES
LIRE CET IMPRIMÉ AVANT DE METTRE LA CHAUDIÈRE EN MARCHE

IMPORTANT : Lors du démarrage de cette nouvelle chaudière veuillez appeler recueil International, Inc. de support technique pour l'assistance à l'installation et l'enregistrement.

Support technique et enregistrement du produit
lundi - vendredi 8h00 à 18h00 heure de l'Est.
1.800.253.7900

Ci-après la procédure d'activation de la Fonction Désaération/Identification Type de Gaz lorsque la chaudière est raccordée pour la première fois à la réseau électrique et les actions à mettre en œuvre en cas d'alimentation avec du gaz propane.

Fonction Désaération

- Lorsque la chaudière est raccordée pour la première fois à la réseau électrique l'afficheur indique 000. Si 1 est affiché, appuyer pendant au moins 2 secondes sur la touche 0R ; l'afficheur montera alors le symbole 000.
- Appuyer simultanément sur les touches 1P et III+ pendant au moins 6 secondes. La fonction « Désaération » est alors activée et l'indication « On » apparaît sur l'afficheur.
- La pompe de la chaudière se met en marche pendant environ 10 minutes. Pour les modèles à production instantanée d'eau chaude, la vanne à 3 voies effectuera la commutation entre les fonctions chauffage et eau chaude sanitaire, ainsi que la purge de l'air présent dans l'installation. L'afficheur indique 3 12.

Identification du type de gaz

- Quand la désaération est terminée la chaudière se met en marche pendant environ 6-7 minutes pour vérifier automatisquement le type de gaz utilisé nG Gaz A (gaz naturel) ou Gaz E LPG (gaz liquide). Le logiciel de la chaudière compare la valeur de combustion et la valeur prédéfinie. L'afficheur montre 000, en alternance avec la valeur en % de la puissance d'allumage et la valeur de la température °F (°C) de départ du chauffage.
- Si la chaudière est alimentée au Gaz A (gaz naturel), l'afficheur indiquera n pendant environ 10 secondes. La chaudière est donc prête à fonctionner normalement. Si l'afficheur montre LPG, appuyer simultanément sur les touches 0R et 1P pendant au moins 4 secondes pour quitter sans modifier le réglage d'usine.
- Si la chaudière est alimentée au Gaz E LPG (gaz liquide), l'afficheur montrera LPG. Appuyer pendant au moins 6 secondes sur la touche 1P pour valider le type de gaz effectivement utilisé. Si l'afficheur indique n, car le gaz d'alimentation n'est pas reconnu, appuyer simultanément sur les touches 0R et 1P pendant au moins 4 secondes pour quitter la fonction, puis modifier le paramètre P02=01 comme cela est décrit dans le manuel d'utilisation pour l'installateur dans «CONFIGURATION PARAMÈTRES " de la chaudière.
- Pendant la phase d'identification du type de gaz la chaudière peut être bruyante.

IMPORTANT : Identification du type de gaz

Garantir l'échange thermique maximum à l'installation de chauffage ou de production d'ECS afin d'éviter que la chaudière ne s'éteigne suite à un problème de surchauffe.

INTERUPTION DE LA FONCTION
Si la fonction de désaération ou d'identification du gaz est interrompue par une coupure de l'alimentation électrique, une fois que le courant est rétabli, réactiver la fonction en appuyant simultanément sur les touches 1P et III+ pendant au moins 6 secondes.
Si pendant la Fonction de Désaération l'afficheur signale l'erreur E118 (basse pression du circuit hydraulique), manœuvrer le robinet de remplissage de l'appareil pour rétablir la pression correcte.
Si la fonction d'identification du gaz est interrompue suite à une erreur (par exemple, E133 absence de gaz), appuyer sur la touche 0R pour réinitialiser, puis appuyer simultanément sur les touches 1P et III+ (pendant au moins 6 secondes) pour réactiver la fonction.
Si la fonction d'identification du gaz est interrompue suite à un problème de surchauffe, réactiver la fonction en appuyant simultanément sur les touches 1P et III+ pendant au moins 6 secondes.

REMARQUE : la combustion de cet appareil a été contrôlée, étalonnée et prédéfinie en usine pour fonctionner avec du gaz NATUREL.

Pendant la Fonction de Contrôle du Type de Gaz, le rapport de combustion augmentera pour une courte durée afin de permettre l'identification du type de gaz.

L'afficheur montre l'identification du type de gaz.

Si la chaudière est exploité à GAS E (LP) remplacer l'étiquette existante avec le gaz E ÉTIQUETTE FOURNIE AVEC CETTE NOTICE. Assurer la conversion de la configuration usine étiquette est appliquée au produit SI LA CONVERSION DE LP.

240011376 REV D [08/01/2021]
Inspection Items

<table>
<thead>
<tr>
<th>Inspection Items</th>
<th>Date Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping</td>
<td></td>
</tr>
<tr>
<td>Near boiler piping</td>
<td></td>
</tr>
<tr>
<td>Check boiler and system piping for any sign of leakage, verify pipes are properly supported.</td>
<td></td>
</tr>
<tr>
<td>Vent</td>
<td></td>
</tr>
<tr>
<td>Check condition of all vent pipes and joints. Verify vent piping terminations are free of obstructions and blockages.</td>
<td></td>
</tr>
<tr>
<td>Safety Relief Valve</td>
<td></td>
</tr>
<tr>
<td>Follow safety relief valve manufacturer's instructions for maintenance and repair. Verify discharge pipe properly installed per IOM.</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
</tr>
<tr>
<td>Visual</td>
<td></td>
</tr>
<tr>
<td>Do full visual inspection of ALL system components.</td>
<td></td>
</tr>
<tr>
<td>Functional</td>
<td></td>
</tr>
<tr>
<td>Test all functions of the system (heat and safety)</td>
<td></td>
</tr>
<tr>
<td>Temperatures</td>
<td></td>
</tr>
<tr>
<td>Verify safe settings on boiler or anti-scald valve. Verify programmed temperature settings.</td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
</tr>
<tr>
<td>Connections</td>
<td></td>
</tr>
<tr>
<td>Check wire connection. Verify connections are tight.</td>
<td></td>
</tr>
<tr>
<td>Smoke and Co detector</td>
<td></td>
</tr>
<tr>
<td>Verify devices are installed and working properly. Change batteries if necessary.</td>
<td></td>
</tr>
<tr>
<td>Circuit Breakers</td>
<td></td>
</tr>
<tr>
<td>Check that circuit breaker is clearly labeled and operates correctly.</td>
<td></td>
</tr>
<tr>
<td>Chamber/ Burner</td>
<td></td>
</tr>
<tr>
<td>Combustion Chamber</td>
<td></td>
</tr>
<tr>
<td>Check burner and combustion chamber. Clean following directions in maintenance section of IOM. Replace gaskets whenever checking combustion chamber.</td>
<td></td>
</tr>
<tr>
<td>Spark Electrode</td>
<td></td>
</tr>
<tr>
<td>Clean. Set gap according to IOM directions. Clean electrode with plumbers cloth to remove oxides.</td>
<td></td>
</tr>
<tr>
<td>Flame Sensor</td>
<td></td>
</tr>
<tr>
<td>Clean sensor.</td>
<td></td>
</tr>
<tr>
<td>Condensate</td>
<td></td>
</tr>
<tr>
<td>Neutralizer</td>
<td></td>
</tr>
<tr>
<td>Check condensate neutralizer - replace if necessary.</td>
<td></td>
</tr>
<tr>
<td>Condensate pipe/trap</td>
<td></td>
</tr>
<tr>
<td>Disconnect condensate pipe. Clean out any dirt or accumulation. Fill with water level of outlet and reinstall. NOTE: verify flow of condensate, make sure hose is properly connected during final inspection.</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
</tr>
<tr>
<td>Measure incoming gas pressure per IOM.</td>
<td></td>
</tr>
<tr>
<td>Pressure drop</td>
<td></td>
</tr>
<tr>
<td>Measure drop in pressure on light off verify with IOM.</td>
<td></td>
</tr>
<tr>
<td>Leaks</td>
<td></td>
</tr>
<tr>
<td>Check gas piping. Test for leaks and signs of aging. Make sure all pipes are properly supported.</td>
<td></td>
</tr>
<tr>
<td>Combustion</td>
<td></td>
</tr>
<tr>
<td>CO/CO₂ Levels</td>
<td></td>
</tr>
<tr>
<td>Check CO and CO₂ level in exhaust. See Start-up Procedures for ranges. Record at high and low fire.</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>All Sensors</td>
<td></td>
</tr>
<tr>
<td>Check continuity of all sensors. Replace if corroded. Verify all connections through ohms reading.</td>
<td></td>
</tr>
<tr>
<td>Final Inspection</td>
<td></td>
</tr>
<tr>
<td>Check List</td>
<td></td>
</tr>
<tr>
<td>Verify you have completed entire check list.</td>
<td></td>
</tr>
<tr>
<td>Homeowner</td>
<td></td>
</tr>
<tr>
<td>Review findings and service with Homeowner.</td>
<td></td>
</tr>
</tbody>
</table>

* Continue inspections beyond 4th year. Maintenance should continue annually for the life of the boiler to ensure safe worry free operation.

PN 240011561 REV B, [09/19/2018]